Weijie Zhang | Design of Materials | Best Researcher Award
Dr. Weijie Zhang Lecturer at Chongqing University of Technology | China
Dr. Weijie Zhang is a Lecturer at the School of Science, Chongqing University of Technology, China. He is dedicated to teaching and research in materials science, with a particular emphasis on advanced energy storage technologies such as supercapacitors and emerging battery systems.
Academic Background
Dr. Zhang completed his doctoral studies at Southeast University, China, where his research focused on the application of metal–organic frameworks (MOFs) and their derivatives for supercapacitors. His work contributed to the deeper understanding of how these materials can enhance the efficiency and stability of electrochemical devices. He began his academic journey at Chongqing University of Technology, where he obtained his undergraduate degree in physics. During this period, he developed a strong foundation in material sciences and demonstrated early excellence through both academic and research achievements.
Research Focus
Dr. Zhang’s research primarily revolves around the development of energy storage materials and devices. His work includes the exploration of graphene composites, MOFs, and related derivatives to improve the performance of supercapacitors, sodium-ion batteries, and zinc-ion batteries. In addition to experimental studies, he is actively engaged in first-principles computational methods, employing simulation tools such as VASP and Materials Studio to complement experimental results. This combination of theory and practice ensures that his research outcomes are scientifically robust and technologically innovative.
Work Experience
As a Lecturer at Chongqing University of Technology, Dr. Zhang is actively involved in teaching, supervising research projects, and mentoring students in physics and materials science. Prior to this position, he pursued extensive doctoral research at Southeast University, where he worked on energy storage materials and developed innovative approaches for the application of MOFs and graphene composites in supercapacitor devices. His professional journey reflects a strong balance of research, teaching, and mentorship.
Key Contributions
Dr. Zhang has made valuable contributions to the advancement of high-performance energy storage devices. His research has focused on enhancing the energy density, durability, and stability of supercapacitors and batteries. By integrating computational modeling with laboratory experiments, he has provided new insights into the design and optimization of electrode materials. His work continues to support the development of sustainable and efficient energy storage solutions.
Awards & Recognition
Dr. Zhang has received several awards and honors in recognition of his academic excellence and research contributions. He has been acknowledged with national and institutional scholarships and recognized as an outstanding graduate at multiple stages of his academic career. These achievements highlight his dedication, consistent performance, and impact in the field of energy materials.
Professional Roles & Memberships
Dr. Zhang is an active participant in academic communities and has presented his research at leading conferences on energy storage and electrochemical systems. His engagement in these forums underscores his commitment to scientific collaboration, knowledge exchange, and the dissemination of innovative research outcomes.
Profile Links: Scopus | Orcid | Researhgate
Featured Publications
Zhang, W. J., et al. (2024). In situ growth of binder-free CoNi₀.₅-MOF/CC electrode for high-performance flexible solid-state supercapacitor application. Nanoscale, 19, 9516–9524.
Zhang, W. J., et al. (2024). C₃N₄ template-based N-doped porous carbon cathode for zinc-ion hybrid capacitors. ACS Applied Nano Materials, 7, 24778–24787.
Zhang, W. J., et al. (2018). N/S co-doped three-dimensional graphene hydrogel for high-performance supercapacitor. Electrochimica Acta, 278, 51–60.
Zhang, W. J., et al. (2021). High-performance Bi₂O₂CO₃/rGO electrode material for asymmetric solid-state supercapacitor application. Journal of Alloys and Compounds, 855, Article 157094.
Zhang, W. J., et al. (2021). Graphene–carbon nanotube@cobalt derivatives from ZIF-67 for all-solid-state asymmetric supercapacitor. Applied Surface Science, 568, 150929.
Impact Statement
Dr. Zhang envisions contributing to the global advancement of sustainable energy technologies through research in high-performance, environmentally friendly energy storage systems. His approach combines experimental innovation with computational simulations, enabling the predictive design of functional materials and devices. Through his work, he aims to foster scientific progress while supporting the transition toward cleaner energy solutions for society and industry.