Sahaya Dennish Babu | material | Best Researcher Award

Sahaya Dennish Babu | material | Best Researcher Award

Dr. Sahaya Dennish Babu , Chettinad College of Engineering & Technology, India.

Dr. G. Sahaya Dennish Babu is a passionate educator and researcher specializing in functional nanomaterials for optoelectronic devices. Currently serving as an Assistant Professor in the Department of Physics at Chettinad College of Engineering & Technology, Karur, he is dedicated to teaching core and applied physics while actively contributing to nanomaterial synthesis for optics, bio-sensing, and CO₂ conversion. With expertise in interdisciplinary research and material characterization, he collaborates on national and international projects to advance sustainable technologies. Beyond academia, he leads initiatives in industrialization, intellectual property, and student mentorship, fostering innovation and scientific progress. 🚀📡💡

Publication Profile

Scopus
Orcid
Google Scholar

Education & Experience 🎓🔬

Education
  • Ph.D. in Functional Nanomaterials for Optoelectronic Devices 🏆

  • M.Phil. in Physics 🎯

  • M.Sc. in Physics 📖

Experience
  • Assistant Professor, Department of Physics (2017 – Present) 🏫

    • Teaching Engineering Physics for multi-engineering branches.

    • Coordinator of IPR, Industrialization Centre for Applied Nanoscience (ICAN), and Enrichment Committee.

    • Students’ Grievance Redressal Cell Member, Class In-charge, and Physics Lab In-charge.

Summary Suitability

Dr. G. Sahaya Dennish Babu, M.Sc., M.Phil., Ph.D., is a distinguished researcher and educator specializing in Functional Nanomaterials for Optoelectronic Devices. His pioneering contributions in nanomaterials for energy applications, sustainable technologies, and advanced material synthesis make him a highly deserving candidate for the Best Researcher Award.

Professional Development  📚🔬✨

Dr. G. Sahaya Dennish Babu is deeply engaged in professional development, continuously enhancing his expertise in nanotechnology, sustainable materials, and physics education. He actively participates in national and international research collaborations, contributing to material synthesis and device fabrication for energy and bio-sensing applications. As an IPR Coordinator, he promotes intellectual property awareness, while his leadership in ICAN fosters industrial partnerships. His dedication to mentoring students, organizing workshops, and engaging in interdisciplinary research underscores his commitment to academic excellence and scientific innovation. Passionate about sustainability and technological advancements, he integrates problem-solving skills with hands-on experimentation. 🌍⚛️💡

Research Focus  🔬🌱🌍

Dr. G. Sahaya Dennish Babu’s research focuses on the design and synthesis of functional nanomaterials for applications in optoelectronics, energy conversion, and sustainable technologies. His expertise includes chalcogenides, perovskites, and nanostructures tailored for optics, bio-sensing, and CO₂ capture. He explores advanced nanomaterials for energy storage and conversion, aiming to develop eco-friendly solutions for global challenges. With a strong interdisciplinary approach, he collaborates on nanomaterial-driven innovations for healthcare, environmental monitoring, and green technologies. His work integrates material characterization, device fabrication, and applied physics, striving to create impactful solutions for a sustainable future. ⚡🌎🧪

Awards & Honors 🏆🎖️🌟

🏅 Best Researcher Award for contributions to nanomaterial synthesis and applications.
🏅 Outstanding Educator Award for excellence in teaching physics.
🏅 Innovation in Sustainable Technology Award for research in CO₂ conversion.
🏅 IPR Excellence Award for fostering intellectual property awareness.
🏅 Best Coordinator Award for leadership in student development initiatives.

Publication Top Notes

1️⃣ Morphology-optimized ZnSnO₃ nanopentagons as efficient electron transport layers for high-efficient perovskite solar cellsJournal of Solid State Chemistry (2025) 🔬☀️📄 | DOI: 10.1016/j.jssc.2025.125322

2️⃣ Microwave-assisted synthesis of Cu₂ZnSnS₄ and Cu₂Zn₀.₅Ni₀.₅SnS₄ nanoparticles for thin-film solar cellsJournal of Materials Science: Materials in Electronics (2024) 🔬⚡📄 | DOI: 10.1007/s10854-024-13956-9

3️⃣ Enhancement of MXene optical properties towards medical applications via metal oxide incorporationNanoscale (2023) 🏥🌱📄 | DOI: 10.1039/D3NR02527F

4️⃣ Highly flexible, green luminescent down-converting and hydrophobic 0-D cesium lead bromide (Cs₄PbBr₆)/poly (vinylidene difluoride) polymer nanocomposites for photonics and display applicationsInorganic Chemistry Communications (2023) 💡🎨📄

5️⃣ Magnetic Nanomaterials for Solar Energy Conversion ApplicationsNanostructured Magnetic Materials: Functionalization and Diverse Applications (2023) 🧲☀️📖

Dr. Kai Xiong | Material | Best Researcher Award

Dr. Kai Xiong | Material | Best Researcher Award

Dr. Kai Xiong , Yunnan University , China.

Dr. Kai Xiong, Ph.D., is a Professor at Yunnan University and a Master Supervisor. A high-level introduced young talent in Yunnan Province and a core faculty member at Donglu, he specializes in multi-scale simulation and the design of rare and high-entropy materials. He has led major research projects, including one National Natural Science Foundation of China (NSFC) project and multiple provincial programs. With over 100 published papers, five software copyrights, and a textbook, he has significantly contributed to material science. His work bridges fundamental research with industrial applications, enhancing innovation in non-ferrous metal materials. 🔬📖

Publication Profile

Scopus
Orcid

Education & Experience 🎓🔬

  • Ph.D. in Materials Science, specialized in multi-scale simulation and material design 🏗️
  • Professor, Yunnan University, mentoring master’s students and conducting advanced research 📚
  • High-level Young Talent, recognized by Yunnan Province for academic excellence 🏅
  • Young & Middle-Aged Backbone Teacher, contributing to scientific advancement at Yunnan University 👨‍🏫
  • Principal Investigator, leading multiple national and provincial research projects 🔬
  • Industry Collaborations, working on enterprise-sponsored research for material innovation ⚙️

Suitability Summmary

Dr. Kai Xiong, a distinguished Professor at Yunnan University, is an ideal candidate for the Best Researcher Award due to his exceptional contributions to material science and engineering. As a high-level introduced young talent in Yunnan Province and a key faculty member at Yunnan University, he has significantly advanced the field of multi-scale simulation and the design of rare and precious non-ferrous metals and high-entropy materials. His research has had a profound impact on the development of next-generation materials, contributing both theoretically and practically to the field.

Professional Development 🚀

Dr. Kai Xiong has made remarkable strides in computational materials science, focusing on multi-scale simulation and the development of advanced non-ferrous and high-entropy materials. His expertise spans theoretical modeling and experimental validation, enabling breakthrough discoveries in material performance enhancement. He actively mentors students, contributes to industrial applications, and collaborates on national and provincial projects. His research has yielded patented innovations, software tools, and a specialized textbook. Through continuous learning and interdisciplinary collaboration, he pushes the boundaries of material science, bridging academia and industry to drive technological advancements in rare and precious metals. 🔍🔧📘

Research Focus 🔬💡

Dr. Kai Xiong specializes in the multi-scale simulation and design of rare and precious non-ferrous metals and high-entropy materials. His work integrates computational modeling, experimental validation, and industrial applications to enhance material properties. Key areas include atomic-level material behavior analysis, nanostructured alloy development, and mechanical and thermal stability optimization. His research plays a vital role in advanced manufacturing, aerospace, and electronic applications, improving material efficiency and sustainability. With a strong foundation in applied physics, chemistry, and engineering, he contributes to cutting-edge advancements that redefine the future of materials science. 🏗️⚡🔍

Awards & Honors 🏆🎖️

  • High-Level Young Talent, Yunnan Province 🏅
  • Young & Middle-Aged Backbone Teacher, Yunnan University 🎓
  • Principal Investigator of NSFC Project 🔬
  • Leader of Yunnan Province Major Science & Technology Programs 🚀
  • Published 100+ Research Papers in Prestigious Journals 📖
  • Author of a Specialized Material Science Textbook 📚
  • Holder of 5 Software Copyrights for Scientific Innovations 💻

Publication Top Notes

  • Machine learning inverse design of high-strength mid-temperature Ag-based solders

    • Journal: Materials & Design
    • Publication Date: April 2025
    • DOI: 10.1016/j.matdes.2025.113736
    • Contributors: Chengchen Jin, Kai Xiong, Yingwu Wang, Shunmeng Zhang, Yunyang Ye, Hui Fang, Aimin Zhang, Hua Dai, Yong Mao
  • Phase size induced anomalous plastic behavior in AuSn-Au₅Sn duplex alloy

    • Journal: Materials Science and Engineering: A
    • Publication Date: March 2025
    • DOI: 10.1016/j.msea.2025.147911
    • Contributors: Rui Ma, Yingjie Sun, Hualong Ge, Wenyan Zhou, Haijun Wu, Lihua Ma, Shaoping Lu, Shunmeng Zhang, Zhiwei Xia, Kai Xiong, et al.
  • High‐throughput calculation integrated with stacking ensemble machine learning for predicting elastic properties of refractory multi‐principal element alloys

    • Journal: Materials Genome Engineering Advances
    • Publication Date: March 12, 2025
    • DOI: 10.1002/mgea.70004
    • Contributors: Chengchen Jin, Kai Xiong, Congtao Luo, Hui Fang, Chaoguang Pu, Hua Dai, Aimin Zhang, Shunmeng Zhang, Yingwu Wang
  • Strength-ductility trade-off in NbTaTiV refractory multi-principal element alloys

    • Journal: Materials Science and Engineering: A
    • Publication Date: February 2025
    • DOI: 10.1016/j.msea.2024.147677
    • Contributors: Yingwu Wang, Kai Xiong, Lingjie Yang, Shunmeng Zhang, Hui Fang, Hua Dai, Chengchen Jin, Yunyang Ye, Congtao Luo, Junjie He, et al.
  • Hf-induced strengthening and lattice distortion in HfNbTaTiV refractory multi-principal element alloys

    • Journal: Journal of Materials Research and Technology
    • Publication Date: January 2025
    • DOI: 10.1016/j.jmrt.2024.12.256
    • Contributors: Yingwu Wang, Kai Xiong, Wei Li, Chengchen Jin, Haijun Wu, Hua Dai, Zihang Yang, Hongmo Yang, Shunmeng Zhang

 

Yong Yu | Materials | Best Researcher Award

Yong Yu | Materials | Best Researcher Award

Dr. Yong Yu , Qingdao University of Technology , China.

Dr. Yong Yu is a dedicated researcher in civil engineering at the School of Civil Engineering, Qingdao University of Technology, China. His expertise lies in high-performance concrete, crumb rubber concrete, and steam-cured concrete. With a strong academic background and a passion for sustainable materials, Dr. Yu has contributed extensively to advancing concrete technology. His research aims to enhance durability, eco-friendliness, and structural performance in construction. He actively collaborates with academia and industry to implement innovative solutions in civil engineering. 📚🔬🏢

Publication Profile

Orcid
Scopus

Education & Experience 📖👷

  • Ph.D. in Civil Engineering – Specialized in advanced concrete materials 🎓🏗️
  • Professor at Qingdao University of Technology – Leading research in sustainable concrete 🏫🔬
  • Industry Collaboration – Works with construction firms on eco-friendly materials 🤝🏢
  • Published Researcher – Numerous papers on high-performance and rubberized concrete 📄📊

Suitability summary

Dr. Yong Yu, a distinguished researcher at the School of Civil Engineering, Qingdao University of Technology, China, is an exceptional candidate for the Best Researcher Award. His groundbreaking contributions to high-performance concrete, crumb rubber concrete, and steam-cured concrete have significantly advanced sustainable and durable construction materials. His expertise in optimizing concrete properties for enhanced strength, durability, and eco-friendliness makes him a leading innovator in civil engineering. 📚🌍

Professional Development 🔬🏗️

Dr. Yong Yu actively engages in cutting-edge research on sustainable concrete materials. His contributions focus on enhancing durability, strength, and environmental benefits in construction. He regularly publishes in top-tier journals, presents at international conferences, and collaborates with industry experts to develop innovative solutions. As a mentor, he supervises students and researchers in civil engineering, guiding them towards practical and impactful research. His work not only advances theoretical knowledge but also influences real-world construction practices, ensuring a balance between strength and sustainability🌍🏗️📚

Research Focus 🔍🏢

Dr. Yong Yu’s research is centered on developing high-performance, durable, and eco-friendly concrete materials. His focus includes:

  • High-Performance Concrete (HPC): Enhancing durability, strength, and resistance to extreme conditions 🏗️💪
  • Crumb Rubber Concrete: Utilizing recycled rubber to improve flexibility and sustainability 🌱♻️
  • Steam-Cured Concrete: Optimizing rapid curing processes for efficient construction 🏭🔥

His studies contribute to reducing carbon footprints, improving material longevity, and promoting sustainable construction worldwide. 🌍🔬🏢

Awards & Honors 🏆🎖️

  • Outstanding Researcher Award – Recognized for contributions to concrete innovation 🏅🏗️
  • Best Paper Award – Published groundbreaking research in material science 📜🏆
  • Excellence in Teaching Award – Acknowledged for mentoring and academic leadership 🎓👨‍🏫
  • Industry Innovation Recognition – Collaborated on sustainable construction projects 🏢♻️

Publication Top Notes

  • 🧪 “Molecular and structural basis of the dual regulation of the polycystin-2 ion channel by small-molecule ligands” (2024) – Proceedings of the National Academy of Sciences
  • 🧬 “Structural basis for human Cav1.2 inhibition by multiple drugs and the neurotoxin calciseptine” (2023) – Cell
  • 🔬 “The diverse effects of pathogenic point mutations on ion channel activity of a gain-of-function polycystin-2” (2023) – Journal of Biological Chemistry
  • 🧫 “Structures of the R-type human Cav2.3 channel reveal conformational crosstalk of the intracellular segments” (2022) – Nature Communications
  • 🧩 “Structural basis for the severe adverse interaction of sofosbuvir and amiodarone on L-type Cav channels” (2022) – Cell
  • 🧪 “The roles of two extracellular loops in proton sensing and permeation in human Otop1 channel” (2022) – Communications Biology
  • 🧬 “The ion channel TRPM7 regulates zinc depletion-induced MDMX degradation” (2021) – Journal of Biological Chemistry

 

Feiyue Wu | Materials | Best Researcher Award

Feiyue Wu | Materials | Best Researcher Award

Dr. Feiyue Wu , Dalian University of Technology , China

🎓 Dr. Feiyue Wu is an Associate Professor at the School of Control Science and Engineering, Dalian University of Technology. He earned his Ph.D. in Control Theory and Control Engineering in 2021. His research specializes in the constrained control of switched systems and their applications in composite materials and structures. Dr. Wu has led five research projects, published 18 SCI/Scopus-indexed articles, and secured three national invention patents. His innovative methods contribute to optimizing the mechanical properties of composite materials. As an IEEE Member, Dr. Wu actively advances control science to enhance composite systems’ reliability and performance. 🌟🔬

Publication Profile

Scopus
Orcid
Google Scholar

Education and Experience 

  • 🎓 Ph.D. in Control Theory and Control Engineering (2021) – Dalian University of Technology, China.
  • 🧑‍🏫 Associate Professor – School of Control Science and Engineering, Dalian University of Technology.
  • 🛠️ Research Leader – Five projects, including a National Natural Science Foundation of China Youth Project.
  • 🤝 Industry Collaboration – Four projects focused on composite material performance optimization.

Suitability Summary

Dr. Feiyue Wu, an Associate Professor at the School of Control Science and Engineering, Dalian University of Technology, is a distinguished nominee for the Best Researcher Award. With a strong academic foundation and a Ph.D. in Control Theory and Control Engineering (2021) from the same institution, Dr. Wu has made remarkable contributions to the fields of constrained control of switched systems and control allocation.

Professional Development 

📈 Dr. Feiyue Wu’s innovative research bridges control science and composite materials. His work addresses critical challenges in optimizing material performance by introducing constrained control methods for switched systems. These advancements enhance the stability, durability, and efficiency of composites under dynamic conditions. 🛠️ He has published 18 indexed journal articles, led five research projects, and secured three national invention patents related to control applications in composite materials. Dr. Wu’s active engagement as an IEEE Member and his collaborations with industry underline his commitment to driving technological progress in materials science and engineering. 🚀🔍

Research Focus 

🔬 Dr. Feiyue Wu’s research emphasizes control science applications in composite materials. By integrating constrained control methods with composite systems, he tackles challenges like dynamic load management, structural optimization, and material stability. His innovative use of semi-ellipsoidal invariant sets enables precise control, enhancing the mechanical properties of composites under various conditions. ⚙️ His work contributes to advancing sustainability and reliability in sectors utilizing composites, such as aerospace, automotive, and construction. With a focus on bridging theory and application, Dr. Wu is revolutionizing control methodologies to elevate composite material performance. 🤖🌿📘

Awards and Honors 

  • 🏆 Three National Invention Patents – Recognized for innovations in control science and composite materials.
  • 📜 18 SCI/Scopus-Indexed Publications – High-impact contributions to control systems in material science.
  • National Natural Science Foundation of China Youth Project – Prestigious research funding leader.
  • 🤝 Active IEEE Member – Advancing control science in composite systems.

 

Publications Top Notes

  • A Cross-Layer Game-Theoretic Approach to Resilient Control of Networked Switched Systems Against DoS Attacks
  • Self-Triggered Model Predictive Control for Switched Systems with Dwell Time Constraints
  • Prescribed Performance Bumpless Transfer Control for Switched Large-Scale Nonlinear Systems
  • Graph-Based Restricted and Arbitrary Switching for Switched Positive Systems via a Weak CLCLF
  • A Stackelberg Game Approach to the Stability of Networked Switched Systems Under DoS Attacks
  • Truncated Predictor Feedback Control for Switched Linear Systems Subject to Input Delay and Saturation
  • Multi-Rate Sampled-Data Control of Switched Affine Systems

 

 

Muayad Esaifan | Materials | Best Researcher Award

Muayad Esaifan | Materials | Best Researcher Award

Dr. Muayad Esaifan, University of Petra, Jordan.

Dr. Muayad Esaifan is an Assistant Professor of Inorganic Chemistry at the University of Petra, Jordan 🇯🇴. He earned his PhD from Vrije Universiteit Brussel 🇧🇪, where he focused on sustainable building materials. His research explores the synthesis of inorganic polymers, nanocomposites, and environmentally friendly materials 🌍. Dr. Esaifan has held research positions in prestigious institutions in Germany 🇩🇪 and Greece 🇬🇷, contributing significantly to material science and environmental research. He is passionate about developing innovative solutions for industrial and construction applications 🏗️.

Publication profile

Orcid

Scopus

Education and Experience (📚💼)

  • 🎓 PhD in Inorganic Materials Chemistry (Vrije Universiteit Brussel, Belgium, 2014)
  • 🎓 MSc in Physical Land Resources (Universiteit Gent, Belgium, 2007)
  • 🎓 MSc in Environmental Science & Management (University of Jordan, 2002)
  • 🎓 BSc in Applied Chemistry (Applied Science Private University, Jordan, 1999)
  • 🧑‍🏫 Assistant Professor, University of Petra (2019–Present)
  • 👨‍🔬 Research Scholar, University of Greifswald, Germany (2017)
  • 🧑‍🏫 Adjunct Professor, University of Jordan (2015–2016)
  • 👨‍🔬 Research Scholar, Technical University of Crete (2014–2015)

Suitability for Best Researcher Award:

Dr. Muayad Esaifan is an outstanding candidate for the Best Researcher Award, backed by his extensive research and contributions in the field of inorganic materials chemistry. He has made significant strides in developing sustainable and cost-effective solutions to global challenges, particularly in environmental applications.

Professional Development (💼🔬)

Dr. Muayad Esaifan has actively participated in various workshops, training courses, and academic activities to enhance his skills and knowledge 📚. He has attended chemical security awareness sessions organized by Oak Ridge National Laboratory 🇺🇸 and workshops on proposal writing by DAAD 🇩🇪. Dr. Esaifan has completed technical training on gas analyzers and electron microscopes 🔬, as well as e-learning programs to enrich his teaching methodologies 🎥. His commitment to continuous learning has led him to participate in regional cooperation workshops and academic development programs, improving his contributions to the field of chemistry and education 🔍.

Research Focus 🧫🧬

Dr. Esaifan’s research focuses on the development and synthesis of inorganic composites, mesoporous alumino-silicate polymers, and environmentally sustainable building materials 🏗️. His work is primarily aimed at soil stabilization, water retention, and purification solutions 💧, using nano-inorganic materials and locally sourced minerals 🌿. Additionally, Dr. Esaifan is involved in the creation of electrically conductive ceramics for advanced industrial applications ⚡. His research strives to minimize CO2 emissions while producing cost-effective and environmentally friendly materials, making his contributions significant in both environmental and industrial sectors 🌍.

Awards and Honors (🏆🎖️)

  • 🏆 Leader in Innovation Fellowship, Royal Academy of Engineering, UK (2024)
  • 🏅 MEDRC Innovation Initiative Awards, Sultanate of Oman (2023)
  • 🎖️ DAAD Research Grant, University of Greifswald, Germany (2017-2018)
  • 🎓 Erasmus Mundus Research Scholar, Technical University of Crete, Greece (2016-2017)
  • 🥇 Erasmus Mundus PhD Scholarship, European Union (2010-2014)
  • 🎓 VLIR-UOS Postgraduate Scholarship, Belgium (2005-2007)
Publication Top Notes

Conclusion

Dr. Muayad Esaifan’s innovative research, international collaborations, and real-world impact make him an exemplary candidate for the Best Researcher Award. His work in developing sustainable, low-cost materials for environmental applications addresses key global challenges, such as climate change and resource conservation. His proven track record of academic excellence, industry impact, and recognized leadership in his field positions him as a highly deserving recipient of this prestigious award.

Assoc. Prof. Dr. Jinxing Wang | carbon Materials | Best Researcher Award

Assoc. Prof. Dr. Jinxing Wang | carbon Materials | Best Researcher Award

Assoc. Prof. Dr. Jinxing Wang , Chongqing University ,China

Jinxing Wang stands as an ultimate authority in the realm of metal-air batteries, particularly in magnesium-air systems, as an Associate Professor at Chongqing University’s School of Materials Science and Engineering. With a distinguished academic journey culminating in MS and Ph.D. degrees from Chongqing University, Prof. Wang has amassed over 77 published papers, cited more than 1300 times, and secured substantial research funding amounting to USD 1 million. His research, highlighted in 41 SCI and SCIE indexed journals, spans electrocatalysis, magnesium alloys, and metal failure analysis, marking him as a pivotal figure in nano-energy battery materials. Beyond publications, his influence extends through 80 consultancy projects and global collaborations, alongside impactful presentations at major conferences and roles as a reviewer for prestigious journals. Prof. Wang’s unwavering dedication to advancing sustainable battery technologies exemplifies his leadership in materials science and engineering, solidifying his legacy in the field.

Profesional Profile:

Scopus

🎓Education:

Prof. Jinxing Wang earned both his Master of Science (MS) and Doctor of Philosophy (Ph.D.) degrees from Chongqing University, where he established a solid foundation in materials science and engineering. This educational background equipped him with the expertise to delve deeply into his research interests, particularly focusing on advancements in metal-air batteries, specifically magnesium-air systems. His academic journey at Chongqing University not only shaped his understanding of electrocatalysis, magnesium alloys, and metal failure analysis but also laid the groundwork for his prolific career in nano-energy battery materials.

🏢Work Experience:

Prof. Jinxing Wang currently holds the position of Associate Professor at Chongqing University’s School of Materials Science and Engineering, where he plays a pivotal role in both research and education. With a focus on materials science and engineering, his work spans across various aspects of battery technology, particularly specializing in magnesium-air systems within the broader context of metal-air batteries. His tenure at Chongqing University has been marked by significant contributions to the field, including extensive research into electrocatalysis, magnesium alloys, and the analysis of metal failures. As an educator, Prof. Wang not only engages in advanced research but also imparts his knowledge to students, shaping the next generation of materials scientists and engineers. His leadership at the university underscores his commitment to advancing sustainable energy solutions through innovative materials research and academic excellence.

🏅Research and Achievements:

Prof. Jinxing Wang is a highly accomplished researcher whose contributions have significantly impacted the field of materials science and engineering. With over 77 published papers garnering more than 1300 citations, his work has been prominently featured in 41 SCI and SCIE indexed journals. Prof. Wang’s research primarily focuses on electrocatalysis, magnesium alloys, and the analysis of metal failures, reflecting his expertise in advancing battery technologies, particularly in magnesium-air systems.

🏆Awards and Recognition:

Prof. Jinxing Wang’s impressive accomplishments speak volumes about his stature in the field of materials science and engineering. With a substantial publication record, including over 77 papers cited more than 1300 times and featured in prestigious SCI and SCIE indexed journals, he has established himself as a leading authority in nano-energy battery materials.Prof. Wang’s ability to secure significant research funding amounting to USD 1 million underscores his leadership and capability in advancing scientific research. His academic contributions extend beyond publications and funding, encompassing 80 consultancy projects and extensive global collaborations, which highlight his influence and expertise in the international scientific community.Moreover, Prof. Wang’s role as a reviewer for respected journals and his impactful presentations at major conferences further demonstrate his commitment to scholarly excellence and knowledge dissemination. Collectively, these achievements solidify Prof. Jinxing Wang’s pivotal role in shaping the landscape of materials science and engineering, particularly in the development of sustainable battery technologies.

Publication Top Notes:

  • First-Principles Calculations of TiB4 and TiB5 as Anodes with High Capacity for Na-Ion Batteries
    • Citations: 0
  • Achieving high strength and rapid degradation in Mg-Gd-Ni alloys by regulating LPSO phase morphology combined with extrusion
    • Citations: 14
  • Enhanced catalytic activity of ZnWO4 by nickel-doping in oxygen evolution reactions
    • Citations: 2
  • Portland cementitious coating with autogenerated oxide film and its anticorrosion behavior on magnesium alloy
    • Citations: 5
  • Research Progress and the Prospect of Damping Magnesium Alloys
    • Citations: 3