Dr. Kai Xiong | Material | Best Researcher Award

Dr. Kai Xiong | Material | Best Researcher Award

Dr. Kai Xiong , Yunnan University , China.

Dr. Kai Xiong, Ph.D., is a Professor at Yunnan University and a Master Supervisor. A high-level introduced young talent in Yunnan Province and a core faculty member at Donglu, he specializes in multi-scale simulation and the design of rare and high-entropy materials. He has led major research projects, including one National Natural Science Foundation of China (NSFC) project and multiple provincial programs. With over 100 published papers, five software copyrights, and a textbook, he has significantly contributed to material science. His work bridges fundamental research with industrial applications, enhancing innovation in non-ferrous metal materials. ๐Ÿ”ฌ๐Ÿ“–

Publication Profile

Scopus
Orcid

Education & Experience ๐ŸŽ“๐Ÿ”ฌ

  • Ph.D. in Materials Science, specialized in multi-scale simulation and material design ๐Ÿ—๏ธ
  • Professor, Yunnan University, mentoring master’s students and conducting advanced research ๐Ÿ“š
  • High-level Young Talent, recognized by Yunnan Province for academic excellence ๐Ÿ…
  • Young & Middle-Aged Backbone Teacher, contributing to scientific advancement at Yunnan University ๐Ÿ‘จโ€๐Ÿซ
  • Principal Investigator, leading multiple national and provincial research projects ๐Ÿ”ฌ
  • Industry Collaborations, working on enterprise-sponsored research for material innovation โš™๏ธ

Suitability Summmary

Dr. Kai Xiong, a distinguished Professor at Yunnan University, is an ideal candidate for the Best Researcher Award due to his exceptional contributions to material science and engineering. As a high-level introduced young talent in Yunnan Province and a key faculty member at Yunnan University, he has significantly advanced the field of multi-scale simulation and the design of rare and precious non-ferrous metals and high-entropy materials. His research has had a profound impact on the development of next-generation materials, contributing both theoretically and practically to the field.

Professional Development ๐Ÿš€

Dr. Kai Xiong has made remarkable strides in computational materials science, focusing on multi-scale simulation and the development of advanced non-ferrous and high-entropy materials. His expertise spans theoretical modeling and experimental validation, enabling breakthrough discoveries in material performance enhancement. He actively mentors students, contributes to industrial applications, and collaborates on national and provincial projects. His research has yielded patented innovations, software tools, and a specialized textbook. Through continuous learning and interdisciplinary collaboration, he pushes the boundaries of material science, bridging academia and industry to drive technological advancements in rare and precious metals. ๐Ÿ”๐Ÿ”ง๐Ÿ“˜

Research Focus ๐Ÿ”ฌ๐Ÿ’ก

Dr. Kai Xiong specializes in the multi-scale simulation and design of rare and precious non-ferrous metals and high-entropy materials. His work integrates computational modeling, experimental validation, and industrial applications to enhance material properties. Key areas include atomic-level material behavior analysis, nanostructured alloy development, and mechanical and thermal stability optimization. His research plays a vital role in advanced manufacturing, aerospace, and electronic applications, improving material efficiency and sustainability. With a strong foundation in applied physics, chemistry, and engineering, he contributes to cutting-edge advancements that redefine the future of materials science. ๐Ÿ—๏ธโšก๐Ÿ”

Awards & Honors ๐Ÿ†๐ŸŽ–๏ธ

  • High-Level Young Talent, Yunnan Province ๐Ÿ…
  • Young & Middle-Aged Backbone Teacher, Yunnan University ๐ŸŽ“
  • Principal Investigator of NSFC Project ๐Ÿ”ฌ
  • Leader of Yunnan Province Major Science & Technology Programs ๐Ÿš€
  • Published 100+ Research Papers in Prestigious Journals ๐Ÿ“–
  • Author of a Specialized Material Science Textbook ๐Ÿ“š
  • Holder of 5 Software Copyrights for Scientific Innovations ๐Ÿ’ป

Publication Top Notes

  • Machine learning inverse design of high-strength mid-temperature Ag-based solders

    • Journal: Materials & Design
    • Publication Date: April 2025
    • DOI: 10.1016/j.matdes.2025.113736
    • Contributors: Chengchen Jin, Kai Xiong, Yingwu Wang, Shunmeng Zhang, Yunyang Ye, Hui Fang, Aimin Zhang, Hua Dai, Yong Mao
  • Phase size induced anomalous plastic behavior in AuSn-Auโ‚…Sn duplex alloy

    • Journal: Materials Science and Engineering: A
    • Publication Date: March 2025
    • DOI: 10.1016/j.msea.2025.147911
    • Contributors: Rui Ma, Yingjie Sun, Hualong Ge, Wenyan Zhou, Haijun Wu, Lihua Ma, Shaoping Lu, Shunmeng Zhang, Zhiwei Xia, Kai Xiong, et al.
  • Highโ€throughput calculation integrated with stacking ensemble machine learning for predicting elastic properties of refractory multiโ€principal element alloys

    • Journal: Materials Genome Engineering Advances
    • Publication Date: March 12, 2025
    • DOI: 10.1002/mgea.70004
    • Contributors: Chengchen Jin, Kai Xiong, Congtao Luo, Hui Fang, Chaoguang Pu, Hua Dai, Aimin Zhang, Shunmeng Zhang, Yingwu Wang
  • Strength-ductility trade-off in NbTaTiV refractory multi-principal element alloys

    • Journal: Materials Science and Engineering: A
    • Publication Date: February 2025
    • DOI: 10.1016/j.msea.2024.147677
    • Contributors: Yingwu Wang, Kai Xiong, Lingjie Yang, Shunmeng Zhang, Hui Fang, Hua Dai, Chengchen Jin, Yunyang Ye, Congtao Luo, Junjie He, et al.
  • Hf-induced strengthening and lattice distortion in HfNbTaTiV refractory multi-principal element alloys

    • Journal: Journal of Materials Research and Technology
    • Publication Date: January 2025
    • DOI: 10.1016/j.jmrt.2024.12.256
    • Contributors: Yingwu Wang, Kai Xiong, Wei Li, Chengchen Jin, Haijun Wu, Hua Dai, Zihang Yang, Hongmo Yang, Shunmeng Zhang

 

Silvia Zecchi | Materials Science | Best Researcher Award

Silvia Zecchi | Materials Science | Best Researcher Award

Ms. Silvia Zecchi, Politecnico di Torino, Italy.

Publication profile

Scopus
Orcid

Education and Experience

  • ๐ŸŽ“ย Doctorateย in Materials Science and Technology, Politecnico di Torino (2022โ€“Present).
  • ๐ŸŽ“ย Master’s Degreeย in Materials Engineering, Politecnico di Torino (2022).
  • ๐ŸŽ“ย Bachelor’s Degreeย in Materials Engineering, Politecnico di Torino (2019).
  • ๐ŸŒย Visiting Ph.D. Student, National Technical University of Athens (2023โ€“2024).
  • ๐Ÿขย Intern, Quality and Innovation at Moncler, Milano, Italy (2022).

Suitability For The Award

Ms. Silvia Zecchi is an exceptional candidate for the Best Researcher Award, as she has demonstrated outstanding contributions to the field of Materials Science and Technology, specifically in the areas of polymer composites, carbon materials, and stealth technologies.

Professional Developmentย 

Awards and Honors

  • ๐Ÿ†ย Co-inventor of aย patentย for an iron-based compound usable in stealth technologies.
  • ๐ŸŽคย Invited Speakerย at the 19th International Conference on Thin Films (ICTF) 2023.
  • ๐Ÿ“œย Contributor toย 21st European Conference on Composite Materialย with two impactful research papers.

Publications

  1. ๐ŸŒฑ Miscanthus-Derived Biochar as a Platform for the Production of Fillers for the Improvement of Mechanical and Electromagnetic Properties of Epoxy Composites, Scavuzzo, S., Zecchi, S., Cristoforo, G., Etzi, M., Bartoli, M. (2024) – C-Journal of Carbon Research, 10(3), 81๐Ÿ“š 0 citations.
  2. ๐Ÿ“– A Comprehensive Review of Electromagnetic Interference Shielding Composite Materials, Zecchi, S., Cristoforo, G., Bartoli, M., Boccaccio, M., Acerra, F. (2024) – Micromachines, 15(2), 187๐Ÿ”ข 7 citations.
  3. ๐Ÿ—๏ธ Selective Laser Sintering versus Multi Jet Fusion: A Comprehensive Comparison Study Based on the Properties of Glass Beads-Reinforced Polyamide 12, Lupone, F., Padovano, E., Lambertini, V.G., Zecchi, S., Badini, C. (2024) – Advanced Engineering Materials, 26(3), 2301345๐Ÿ“– 1 citation.
  4. โšก Effect of Red Mud Addition on Electrical and Magnetic Properties of Hemp-Derived-Biochar-Containing Epoxy Composites, Zecchi, S., Ruscillo, F., Cristoforo, G., Berruti, F., Tagliaferro, A. (2023) – Micromachines, 14(2), 429๐Ÿ“Š 5 citations.