Fa-Feng Xu | Materials Science | Best Researcher Award

Fa-Feng Xu | Materials Science | Best Researcher Award

Assistant Researcher at Qinghai Institute of Saltlakes Chinese Academy of Sciences, China.

Dr. Fa-Feng Xu is an Assistant Research Fellow at the Key Laboratory of Green and High-End Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences. He earned his Ph.D. in Physical Chemistry from the Institute of Chemistry, CAS, where he also conducted postdoctoral research in Material Engineering. With a multidisciplinary background in chemistry, materials science, and photophysics, his work explores organic microlasers, photonic materials, and optical applications. Dr. Xu’s innovative contributions in functional organic systems for high-performance photonic devices reflect a strong foundation in synthesis, device fabrication, and interdisciplinary research.

Professional Profile

Orcid

Education and Experience:

  • 2010.09–2014.07 – B.Sc. in Material Chemistry, Jilin University
    Supervisor: Prof. Yuguang Ma (Academician, CAS)

  • 2014.09–2020.07 – Ph.D. in Physical Chemistry, Institute of Chemistry, CAS
    Supervisors: Prof. Jiannian Yao & Prof. Yong Sheng Zhao

  • 2020.07–2023.11 – Postdoctoral Fellow in Material Engineering, Institute of Chemistry, CAS
    Supervisor: Prof. Yu-Wu Zhong

  • 2023.11–Present – Assistant Research Fellow, Qinghai Institute of Salt Lakes, CAS

Suitability Summary for the Best Researcher Award

Dr. Fa-Feng Xu stands out as a highly qualified candidate for the Best Researcher Award based on a robust academic background, interdisciplinary research strengths, and significant contributions to cutting-edge fields such as organic microlasers, photochemistry, and material engineering. His training across prestigious institutions, including the Institute of Chemistry, Chinese Academy of Sciences, and Jilin University, under the supervision of eminent scientists (e.g., Academician Prof. Jiannian Yao), reflects strong mentorship and high-level exposure.

Professional Development

Dr. Xu has cultivated a robust interdisciplinary foundation, seamlessly integrating physical chemistry, materials science, and optical physics into his research. He specializes in designing and synthesizing organometallic and polymeric materials for advanced photonic functionalities. Dr. Xu’s professional development is driven by hands-on experience in organic molecule synthesis, micro/nanostructure preparation, and device fabrication, enabling him to create high-performance organic microlaser arrays and waveguides. He is proficient with cutting-edge instrumentation and experimental methods, allowing detailed structural characterization and optical analysis. His research contributes to pioneering applications in display technologies, information security, and nonlinear optical devices.

Research Focus

🔬 Dr. Fa-Feng Xu’s research lies at the intersection of organic photonics, functional materials, and optical device engineering. His primary focus is on the design, synthesis, and application of organic and organometallic materials for light-emitting applications like microlasers and waveguides. He explores multidisciplinary solutions for problems in photophysics, nonlinear optics, and information encryption, contributing to advancements in next-generation displays and secure communication systems. His work spans organic materials, liquid crystals, nanostructures, and polymer microdevices, with an emphasis on device fabrication and performance evaluation under optical stimuli.

Awards and Recognition

Dr. Fa-Feng Xu has been recognized for his academic excellence and research contributions through numerous awards and honors. He received the Excellent Paper Certificate from the 8th China Association for Science and Technology Excellent Scientific Paper Selection Program, highlighting the significance of his research output. During his academic journey, he was consistently acknowledged for outstanding performance, receiving the Merit Student Award (2014–2015) and being named a School Outstanding Student Leader (2015–2016) at the University of Chinese Academy of Sciences. He was also a recipient of Academic Scholarships from 2014 to 2019 at UCAS. Earlier in his education, he earned National Encouragement Scholarships (2010–2011, 2011–2012) and was awarded the Excellence Scholarship at Jilin University for the academic year 2010–2011.

Top Noted Publications

  • Recent Advances in Liquid Crystal Polymer-Based Circularly Polarized Luminescent Materials, 2025, Polymers

  • Stacking Interactions and Photovoltaic Performance of Cs₂AgBiBr₆ Perovskite, 2023, Solar RRL

  • Molecular Cocrystals with Hydrogen-Bonded Polymeric Structures and Polarized Luminescence, 2022, Materials

  • Selective, Anisotropic, or Consistent Polarized‐Photon Out‐Coupling of 2D Organic Microcrystals, 2022, Angewandte Chemie International Edition

  • Organoplatinum(II) Cruciform: A Versatile Building Block to Fabricate 2D Microcrystals with Full‐Color and White Phosphorescence and Anisotropic Photon Transport, 2022, Angewandte Chemie International Edition

  • Full-color Flexible Laser Displays Based on Random Laser Arrays, 2021, Science China Materials

  • 3D Laser Displays Based on Circularly Polarized Lasing from Cholesteric Liquid Crystal Arrays, 2021, Advanced Materials

  • Room Temperature Exciton–Polariton Bose–Einstein Condensation in Organic Single-Crystal Microribbon Cavities, 2021, Nature Communications

Haolei Mou | Materials Science | Best Researcher Award

Haolei Mou | Materials Science | Best Researcher Award

Dr. Haolei Mou, Civil Aviation University, China.

Jong-Han Lee | Smart Materials | Best Researcher Award

Jong-Han Lee | Smart Materials | Best Researcher Award

Prof. Dr. Jong-Han Lee, Inha University, South Korea.

Dr. Jong-Han Lee 🎓 is a Professor and Head of the Department of Civil Engineering at Inha University, Korea. His expertise spans hazard risk analysis, smart materials, earthquake-resistant design, and structural resilience 🏗️. With a Ph.D. from Georgia Institute of Technology, he has held key roles in academia and industry, including POSCO E&C and Daegu University. A prolific researcher, he leads cutting-edge projects in digital twins, CFRP reinforcements, and AI-driven structural analysis 🧠🔬. He actively contributes to global conferences and editorial boards, shaping the future of civil engineering innovation 🌍.

Publivation Profiles

Scopus
Googlescholar

Education and Experience

✅ Ph.D. in Civil Engineering – Georgia Institute of Technology (2010)
✅ M.S. in Civil Engineering – KAIST, Korea (2004)
✅ B.S. in Civil Engineering – KAIST, Korea (2002)

🏛️ Professor & Head – Inha University (2024–Present)
🏛️ Associate Professor – Inha University (2019–2024)
🏛️ Assistant Professor – Inha University (2019)
🏛️ Assistant Professor – Daegu University (2013–2019)
🏗️ Section Manager – POSCO E&C (2011–2013)
🔬 Postdoctoral Researcher – Georgia Tech (2010–2011)
🔍 Graduate Research Assistant – Georgia Tech & KAIST

Suitability summary for best researcher Award

Dr. Jong-Han Lee, Ph.D., P.E., a distinguished Professor in the Department of Civil Engineering at Inha University, has been honored with the Best Researcher Award for his outstanding contributions to structural engineering, hazard risk analysis, and smart material applications. His extensive research and leadership in earthquake-resistant design, structural integrity assessment, and smart infrastructure development have significantly advanced the field, making him a deserving recipient of this prestigious accolade.

Professional Development

Dr. Lee has significantly impacted structural engineering, specializing in hazard risk mitigation, earthquake resilience, and smart materials integration 🏗️. As a conference chairman, editor-in-chief, and research leader, he actively contributes to advancing construction safety and sustainability 🌍. His leadership in Korea’s major civil engineering committees fosters global collaborations. With expertise in AI-driven diagnostics and digital twin technologies, his work bridges research and real-world applications 🤖📊. Committed to innovation, he continues to pioneer advanced construction materials, ensuring structural integrity and sustainability for future generations 🏢💡.

Research Focus

Jong-Han Lee, Ph.D., P.E., focuses on structural resilience 🏗️hazard risk analysis 🌍, and earthquake-resistant design ⚡. His research spans smart materials and structures 🧠, integrating field data with numerical simulations 📊 to enhance structural integrity 🏢. He develops advanced monitoring systems 🔍 and digital twin technologies 🖥️ for predictive maintenance. His work on carbon fiber reinforcement 🏗️ and self-healing cementitious materials 🏠 aims at sustainable infrastructure 🌱. With expertise in high-speed rail bridge dynamics 🚄 and concrete deterioration analysis 🏚️, his research contributes to safer, longer-lasting structures in civil engineering.

Awards and Honors

🏅 Best Paper Award – Korea Society of Civil Engineers
🏅 Outstanding Research Award – Korea Concrete Institute
🏅 Excellence in Engineering Innovation – Korea Institute for Structural Maintenance
🏅 Top 10 Influential Civil Engineers in Korea – 2023
🏅 Best Young Researcher Award – Korean Institute of Bridge and Structural Engineers
🏅 Outstanding Editor Award – KSCE Journal of Civil Engineering
🏅 Government Research Grant Awards – National Research Foundation of Korea

Publication Top Noted

1️⃣ Flexural capacity of fiber reinforced concrete with a consideration of concrete strength and fiber content – Construction and Building Materials (2017) – 📖 Cited by: 173 🏗️

2️⃣ Influence of concrete strength combined with fiber content in the residual flexural strengths of fiber reinforced concrete – Composite Structures (2017) – 📖 Cited by: 148 🏢

3️⃣ Investigation of extreme environmental conditions and design thermal gradients during construction for prestressed concrete bridge girders – Journal of Bridge Engineering (2012) – 📖 Cited by: 105 🌡️🌉

4️⃣ Application of probabilistic neural networks for prediction of concrete strength – Journal of Materials in Civil Engineering (2005) – 📖 Cited by: 101 🤖🔢

5️⃣ Analysis of thermal environmental effects on precast, prestressed concrete bridge girders: temperature differentials and thermal deformations – Advances in Structural Engineering (2012) – 📖 Cited by: 95 🌞🌉

6️⃣ Crack-closing performance of NiTi and NiTiNb fibers in cement mortar beams using shape memory effects – Composite Structures (2018) – 📖 Cited by: 67 🔩🏗️

7️⃣ Experimental study of the reinforcement effect of macro-type high strength polypropylene on the flexural capacity of concrete – Construction and Building Materials (2016) – 📖 Cited by: 64 🏗️🔬

8️⃣ A vision-based dynamic rotational angle measurement system for large civil structures – Sensors (2012) – 📖 Cited by: 63 📸🏢