Dr. Kai Xiong | Material | Best Researcher Award

Dr. Kai Xiong | Material | Best Researcher Award

Dr. Kai Xiong , Yunnan University , China.

Dr. Kai Xiong, Ph.D., is a Professor at Yunnan University and a Master Supervisor. A high-level introduced young talent in Yunnan Province and a core faculty member at Donglu, he specializes in multi-scale simulation and the design of rare and high-entropy materials. He has led major research projects, including one National Natural Science Foundation of China (NSFC) project and multiple provincial programs. With over 100 published papers, five software copyrights, and a textbook, he has significantly contributed to material science. His work bridges fundamental research with industrial applications, enhancing innovation in non-ferrous metal materials. 🔬📖

Publication Profile

Scopus
Orcid

Education & Experience 🎓🔬

  • Ph.D. in Materials Science, specialized in multi-scale simulation and material design 🏗️
  • Professor, Yunnan University, mentoring master’s students and conducting advanced research 📚
  • High-level Young Talent, recognized by Yunnan Province for academic excellence 🏅
  • Young & Middle-Aged Backbone Teacher, contributing to scientific advancement at Yunnan University 👨‍🏫
  • Principal Investigator, leading multiple national and provincial research projects 🔬
  • Industry Collaborations, working on enterprise-sponsored research for material innovation ⚙️

Suitability Summmary

Dr. Kai Xiong, a distinguished Professor at Yunnan University, is an ideal candidate for the Best Researcher Award due to his exceptional contributions to material science and engineering. As a high-level introduced young talent in Yunnan Province and a key faculty member at Yunnan University, he has significantly advanced the field of multi-scale simulation and the design of rare and precious non-ferrous metals and high-entropy materials. His research has had a profound impact on the development of next-generation materials, contributing both theoretically and practically to the field.

Professional Development 🚀

Dr. Kai Xiong has made remarkable strides in computational materials science, focusing on multi-scale simulation and the development of advanced non-ferrous and high-entropy materials. His expertise spans theoretical modeling and experimental validation, enabling breakthrough discoveries in material performance enhancement. He actively mentors students, contributes to industrial applications, and collaborates on national and provincial projects. His research has yielded patented innovations, software tools, and a specialized textbook. Through continuous learning and interdisciplinary collaboration, he pushes the boundaries of material science, bridging academia and industry to drive technological advancements in rare and precious metals. 🔍🔧📘

Research Focus 🔬💡

Dr. Kai Xiong specializes in the multi-scale simulation and design of rare and precious non-ferrous metals and high-entropy materials. His work integrates computational modeling, experimental validation, and industrial applications to enhance material properties. Key areas include atomic-level material behavior analysis, nanostructured alloy development, and mechanical and thermal stability optimization. His research plays a vital role in advanced manufacturing, aerospace, and electronic applications, improving material efficiency and sustainability. With a strong foundation in applied physics, chemistry, and engineering, he contributes to cutting-edge advancements that redefine the future of materials science. 🏗️⚡🔍

Awards & Honors 🏆🎖️

  • High-Level Young Talent, Yunnan Province 🏅
  • Young & Middle-Aged Backbone Teacher, Yunnan University 🎓
  • Principal Investigator of NSFC Project 🔬
  • Leader of Yunnan Province Major Science & Technology Programs 🚀
  • Published 100+ Research Papers in Prestigious Journals 📖
  • Author of a Specialized Material Science Textbook 📚
  • Holder of 5 Software Copyrights for Scientific Innovations 💻

Publication Top Notes

  • Machine learning inverse design of high-strength mid-temperature Ag-based solders

    • Journal: Materials & Design
    • Publication Date: April 2025
    • DOI: 10.1016/j.matdes.2025.113736
    • Contributors: Chengchen Jin, Kai Xiong, Yingwu Wang, Shunmeng Zhang, Yunyang Ye, Hui Fang, Aimin Zhang, Hua Dai, Yong Mao
  • Phase size induced anomalous plastic behavior in AuSn-Au₅Sn duplex alloy

    • Journal: Materials Science and Engineering: A
    • Publication Date: March 2025
    • DOI: 10.1016/j.msea.2025.147911
    • Contributors: Rui Ma, Yingjie Sun, Hualong Ge, Wenyan Zhou, Haijun Wu, Lihua Ma, Shaoping Lu, Shunmeng Zhang, Zhiwei Xia, Kai Xiong, et al.
  • High‐throughput calculation integrated with stacking ensemble machine learning for predicting elastic properties of refractory multi‐principal element alloys

    • Journal: Materials Genome Engineering Advances
    • Publication Date: March 12, 2025
    • DOI: 10.1002/mgea.70004
    • Contributors: Chengchen Jin, Kai Xiong, Congtao Luo, Hui Fang, Chaoguang Pu, Hua Dai, Aimin Zhang, Shunmeng Zhang, Yingwu Wang
  • Strength-ductility trade-off in NbTaTiV refractory multi-principal element alloys

    • Journal: Materials Science and Engineering: A
    • Publication Date: February 2025
    • DOI: 10.1016/j.msea.2024.147677
    • Contributors: Yingwu Wang, Kai Xiong, Lingjie Yang, Shunmeng Zhang, Hui Fang, Hua Dai, Chengchen Jin, Yunyang Ye, Congtao Luo, Junjie He, et al.
  • Hf-induced strengthening and lattice distortion in HfNbTaTiV refractory multi-principal element alloys

    • Journal: Journal of Materials Research and Technology
    • Publication Date: January 2025
    • DOI: 10.1016/j.jmrt.2024.12.256
    • Contributors: Yingwu Wang, Kai Xiong, Wei Li, Chengchen Jin, Haijun Wu, Hua Dai, Zihang Yang, Hongmo Yang, Shunmeng Zhang

 

Rumyana Lazarova | Materials Science | Best Researcher Award

Rumyana Lazarova | Materials Science | Best Researcher Award

Prof. Dr. Rumyana Lazarova, Institute of Metal Science, Equipment and Technologies with Hydro- and Aerodynamics Centre, Bulgaria.

Yong Yu | Materials | Best Researcher Award

Yong Yu | Materials | Best Researcher Award

Dr. Yong Yu , Qingdao University of Technology , China.

Dr. Yong Yu is a dedicated researcher in civil engineering at the School of Civil Engineering, Qingdao University of Technology, China. His expertise lies in high-performance concrete, crumb rubber concrete, and steam-cured concrete. With a strong academic background and a passion for sustainable materials, Dr. Yu has contributed extensively to advancing concrete technology. His research aims to enhance durability, eco-friendliness, and structural performance in construction. He actively collaborates with academia and industry to implement innovative solutions in civil engineering. 📚🔬🏢

Publication Profile

Orcid
Scopus

Education & Experience 📖👷

  • Ph.D. in Civil Engineering – Specialized in advanced concrete materials 🎓🏗️
  • Professor at Qingdao University of Technology – Leading research in sustainable concrete 🏫🔬
  • Industry Collaboration – Works with construction firms on eco-friendly materials 🤝🏢
  • Published Researcher – Numerous papers on high-performance and rubberized concrete 📄📊

Suitability summary

Dr. Yong Yu, a distinguished researcher at the School of Civil Engineering, Qingdao University of Technology, China, is an exceptional candidate for the Best Researcher Award. His groundbreaking contributions to high-performance concrete, crumb rubber concrete, and steam-cured concrete have significantly advanced sustainable and durable construction materials. His expertise in optimizing concrete properties for enhanced strength, durability, and eco-friendliness makes him a leading innovator in civil engineering. 📚🌍

Professional Development 🔬🏗️

Dr. Yong Yu actively engages in cutting-edge research on sustainable concrete materials. His contributions focus on enhancing durability, strength, and environmental benefits in construction. He regularly publishes in top-tier journals, presents at international conferences, and collaborates with industry experts to develop innovative solutions. As a mentor, he supervises students and researchers in civil engineering, guiding them towards practical and impactful research. His work not only advances theoretical knowledge but also influences real-world construction practices, ensuring a balance between strength and sustainability🌍🏗️📚

Research Focus 🔍🏢

Dr. Yong Yu’s research is centered on developing high-performance, durable, and eco-friendly concrete materials. His focus includes:

  • High-Performance Concrete (HPC): Enhancing durability, strength, and resistance to extreme conditions 🏗️💪
  • Crumb Rubber Concrete: Utilizing recycled rubber to improve flexibility and sustainability 🌱♻️
  • Steam-Cured Concrete: Optimizing rapid curing processes for efficient construction 🏭🔥

His studies contribute to reducing carbon footprints, improving material longevity, and promoting sustainable construction worldwide. 🌍🔬🏢

Awards & Honors 🏆🎖️

  • Outstanding Researcher Award – Recognized for contributions to concrete innovation 🏅🏗️
  • Best Paper Award – Published groundbreaking research in material science 📜🏆
  • Excellence in Teaching Award – Acknowledged for mentoring and academic leadership 🎓👨‍🏫
  • Industry Innovation Recognition – Collaborated on sustainable construction projects 🏢♻️

Publication Top Notes

  • 🧪 “Molecular and structural basis of the dual regulation of the polycystin-2 ion channel by small-molecule ligands” (2024) – Proceedings of the National Academy of Sciences
  • 🧬 “Structural basis for human Cav1.2 inhibition by multiple drugs and the neurotoxin calciseptine” (2023) – Cell
  • 🔬 “The diverse effects of pathogenic point mutations on ion channel activity of a gain-of-function polycystin-2” (2023) – Journal of Biological Chemistry
  • 🧫 “Structures of the R-type human Cav2.3 channel reveal conformational crosstalk of the intracellular segments” (2022) – Nature Communications
  • 🧩 “Structural basis for the severe adverse interaction of sofosbuvir and amiodarone on L-type Cav channels” (2022) – Cell
  • 🧪 “The roles of two extracellular loops in proton sensing and permeation in human Otop1 channel” (2022) – Communications Biology
  • 🧬 “The ion channel TRPM7 regulates zinc depletion-induced MDMX degradation” (2021) – Journal of Biological Chemistry

 

Xiping Luo | Design of Materials | Best Researcher Award

Xiping Luo | Design of Materials | Best Researcher Award

Prof. Dr. Xiping Luo, Zhejiang Agriculture and Forestry University, China.

Dr. Xiping Luo is a Professor and Vice Dean at the School of Science at Zhejiang Agriculture and Forestry University, where he also serves as the Director of the Key Laboratory of Chemical Utilization of Forestry Biomass in Zhejiang Province. Specializing in the development and chemical utilization of forestry biological resources, he has led several national and provincial research projects, published over 40 papers, and holds 16 invention patents. Dr. Luo has received multiple awards and is committed to advancing sustainable solutions in the field of chemical engineering. 🌱🔬📚

Publication Profiles

Orcid
Scopus

Education & Experience 🎓💼

  • 2016/12: PhD in Engineering, School of Chemical Engineering, Zhejiang University of Technology 🎓
  • 2001/04-Present: Lecturer, Associate Professor, Professor, Vice Dean, School of Chemistry and Materials Engineering, Zhejiang Agriculture and Forestry University 🏫
  • 2015/02-2016/02: Research visit, UC Davis, USA 🌎
  • 2012/10-2012/11: International training, Kenesaw State University, USA m
  • 2006/02-2006/03: JICA Research and Training, Japan 🇯🇵

Summary Suitability

Dr. Xiping Luo, Professor and Doctor of Engineering, is a leading researcher in biomass chemistry and sustainable materials. As Vice Dean at Zhejiang Agriculture and Forestry University and Director of a key provincial laboratory, he has pioneered innovative energy storage solutions, advanced bio-based sensors, and catalytic materials. With 16 patents, 40+ high-impact publications, and leadership in national and international projects, his work has significantly impacted renewable energy and green technology. Recognized with multiple provincial and ministerial awards, Dr. Luo’s groundbreaking contributions to forestry biomass utilization and environmental sustainability make him a deserving recipient of the Best Researcher Award.

Professional Development  📚🔍

Dr. Luo’s professional growth has been marked by various international collaborations and training. He spent time at UC Davis, USA, and Kenesaw State University, focusing on higher education and research. Additionally, he engaged in research and training in Japan under the JICA program. These experiences have helped him develop a global perspective on scientific innovation and contribute significantly to forestry biomass utilization research. His academic journey reflects a continual commitment to expanding his expertise, fostering innovation in sustainable chemistry. 🌍🔬🤝

Research Focus

Dr. Xiping Luo’s research is primarily centered on the chemical utilization of forestry biomass. He explores innovative ways to develop and process biological resources for sustainable applications in chemistry and environmental sciences. His work aims to create more efficient, environmentally friendly processes that make use of renewable natural resources, thus contributing to a greener future. Through his work in this field, Dr. Luo also delves into advanced material development, catalysis, and energy storage systems, especially in relation to batteries and electrochemical devices. 🌿🔋⚗️

Awards And Honours

  • 3 Provincial and Ministerial Level Achievement Awards 🏅
  • 2 Departmental and Bureau Level Awards 🏆
  • 16 Invention Patents Granted 🛠️
  • National 948 Project Leader 🏅
  • National “Twelfth Five Year Plan” Science and Technology Support Project Leader 🌐

Publications Top Noted

  • “High adsorption to methylene blue based on Fe₃O₄–N-banana-peel biomass charcoal” – RSC Advances, 2024 📖🔍
  • “Preparation of Aminated Sodium Lignosulfonate and Efficient Adsorption of Methyl Blue Dye” – Materials, 2024 📖🧪
  • “Zinc Oxide-Loaded Cellulose-Based Carbon Gas Sensor for Selective Detection of Ammonia” – Nanomaterials, 2023 📖🌱
  • “Zinc Oxide Loaded Cellulose-Based Carbon Gas Sensor for Selective Detection of Ammonia” – Preprint, 2023 📖🧑‍🔬

 

 

Chunxiu zhang | Materials Engineering | Best Researcher Award

Chunxiu zhang | Materials Engineering | Best Researcher Award

Prof. Dr. chunxiu zhang , Best Researcher Award , China.

📘Prof. Dr.Chunxiu Zhang is a professor and Chair of the Department of Polymer and Materials Engineering at the Beijing Institute of Graphic Communication. She earned her Ph.D. in Optical Engineering from Beijing Jiaotong University. Her research focuses on discotic liquid crystals, quasicrystal molecular design, molecular self-assembly, and optoelectronic applications. She also specializes in molecular simulation and computation. With extensive experience in advanced material synthesis and characterization, she has contributed significantly to the field of optoelectronic materials. Her work integrates theoretical and experimental approaches, driving innovation in next-generation materials for optical and electronic applications. 🔬✨.

Publication Profile

Orcid

Education & Experience

🎓 Ph.D. in Optical Engineering – Beijing Jiaotong University
👩‍🏫 Professor & Chair – Department of Polymer and Materials Engineering, Beijing Institute of Graphic Communication

Suitability Summary

Prof Dr.Chunxiu Zhang, a distinguished recipient of the Best Researcher Award, has made remarkable contributions to the field of Optical Engineering and Materials Science. With a Ph.D. in Optical Engineering from Beijing Jiaotong University, she currently serves as the Chair of the Department of Polymer and Materials Engineering at Beijing Institute of Graphic Communication. Her pioneering work spans multiple cutting-edge domains, including discotic liquid crystal and quasicrystal molecular design and synthesis, molecular self-assembly, and optoelectronic applications.

Professional Development

🔍 Prof.Dr.Chunxiu Zhang has continuously advanced her expertise in polymer and materials engineering, contributing extensively to the field of molecular self-assembly and optoelectronics. She has led various research projects, focusing on discotic liquid crystals and quasicrystal molecular design, driving advancements in display and sensor technologies. Her dedication to interdisciplinary studies, combining chemistry, physics, and engineering, has resulted in novel material innovations. Through molecular simulations and computational modeling, she optimizes materials for high-performance applications. As a mentor, she guides aspiring researchers, fostering academic growth and innovation in advanced materials. 📡🔬💡

Research Focus

🔬 Prof.Dr.Chunxiu Zhang research spans the cutting edge of optical and electronic materials, specializing in discotic liquid crystalsquasicrystal molecular design, and molecular self-assembly. Her studies aim to revolutionize display technologies, organic photovoltaics, and molecular electronics. By leveraging molecular simulations and computation, she refines the synthesis and properties of advanced materials, enhancing their optoelectronic applications. Her interdisciplinary approach bridges polymer science, nanotechnology, and materials engineering, paving the way for next-generation smart materials. Her contributions significantly impact the fields of photonic devices, flexible electronics, and self-assembling molecular architectures⚛️📡🔍

Awards & Honors

🏆 Outstanding Researcher Award – Recognized for excellence in polymer and materials engineering
🏅 Best Paper Award – Multiple accolades in international materials science conferences
🎖️ Innovation in Optoelectronics Award – Acknowledged for pioneering contributions to self-assembling molecular systems
📜 Research Grant Recipient – Secured major funding for advancing optoelectronic applications
💡 Keynote Speaker – Invited to prestigious global conferences in materials science and engineering

Publication Top Notes

  • 📄 “Macromolecular Rapid Communications” (2024-12-20) – Zhang, C. et al.
    🔗 DOI: 10.1002/marc.202400839
    📊 Cited by: N/A 🔬📈
  • 📄 “Circularly polarized luminescent liquid crystal materials with aggregation-induced emission functionality” (2023) – Zhang, C. et al.
    🔗 DOI: 10.37188/CJLCD.2023-0224
    📊 Cited by: N/A 💡🌈
  • 📄 “Statistical inference in EV linear model” (2023) – Zhang, C. et al.
    🔗 DOI: 10.1080/03610926.2021.1914096
    📊 Cited by: N/A 📊📉
  • 📄 “Progress on Frank-Kasper phases in soft matter” (2022) – Zhang, C. et al.
    🔗 DOI: 10.37188/CJLCD.2022-0281
    📊 Cited by: N/A 🏗️🔬
  • 📄 “The steric hindrance effect of bulky groups on the formation of columnar superlattices and optoelectronic properties of triphenylene-based discotic liquid crystals” (2022) – Zhang, C. et al.
    🔗 DOI: 10.1039/D2NJ01542K
    📊 Cited by: N/A ⚡📡.

 

Jin Bai | Material Synthesis | Best Researcher Award

Jin Bai | Material Synthesis | Best Researcher Award

Assoc. Prof. Dr. Jin Bai, Chinese Academy of Sciences, China.

Jin Bai is a dedicated researcher specializing in materials physics and chemistry, with a strong focus on functional materials and nanotechnology. He has contributed extensively to material synthesis, structural analysis, and advanced applications in energy storage and electronics. As a Special Associate Research Fellow at the Hefei Institutes of Physical Science, he continues to drive innovation through cutting-edge research. Recognized for his excellence, he has received multiple honors, including the ‘Hefei E Class High-Level Talents’ award. With numerous publications and a passion for discovery, he remains at the forefront of scientific advancements in materials science. ⚛️📚

Publivation Profiles

SCOPUS

Education and Experience

  • Ph.D. in Materials Physics and Chemistry (2015–2020) 📚
    • University of Science and Technology of China (USTC)
  • Bachelor’s in Materials Physics (2011–2015) 🎓
    • Huaibei Normal University, China
  • Special Associate Research Fellow (2024–Present) 🏅
    • Hefei Institutes of Physical Science, Chinese Academy of Sciences
  • Postdoctoral Fellow (2020–2023) 🔬
    • Hefei Institutes of Physical Science, Chinese Academy of Sciences

Suitability summary 

Assoc. Prof. Dr. Jin Bai, a Special Associate Research Fellow at the Hefei Institutes of Physical Science, Chinese Academy of Sciences, is honored with the Best Researcher Award for his outstanding contributions to materials physics, nanomaterials, and advanced material synthesis. His research has significantly impacted cutting-edge material design, physical property optimization, and innovative applications in energy and electronic devices. His excellence has been recognized through multiple prestigious awards, including the ‘Hefei E-Class High-Level Talent’ Honor (2025) and the ‘Excellent Postdoctor’ Honor (2021-2023).

Professional Development

Jin Bai has built a distinguished career in materials physics, focusing on advanced materials and their applications in science and industry. During his postdoctoral tenure (2020-2023), he worked extensively on cutting-edge materials research, leading to significant innovations. Now, as a Special Associate Research Fellow, he is deeply involved in experimental and theoretical studies aimed at advancing functional materials. His work is widely recognized for its impact on materials science, contributing to global scientific knowledge. With an eye on the future, Jin Bai continues to drive research excellence, mentoring young scientists and collaborating internationally. 🔬🌍

Research Focus

Jin Bai specializes in materials physics and chemistry, with a strong focus on functional materials, nanotechnology, and applied materials research. His research explores material synthesis, structural analysis, and functional properties to enhance applications in electronics, energy storage, and environmental solutions. He investigates nanomaterials, quantum materials, and bio-inspired materials to develop next-generation technological solutions. His work integrates theoretical and experimental approaches, bridging gaps in advanced material development. With numerous publications and honors, his research significantly contributes to the scientific community, driving innovation in high-performance materials for sustainable and technological applications⚡🔬🌱

Awards And Honours

  • 🏆 2025 – ‘Hefei E Class High-Level Talents’ honor, Hefei, Anhui, China
  • 🥇 2021-2023 – ‘Excellent Postdoctoral’ honor, Hefei Institutes of Physical Science, Chinese Academy of Sciences
  • 🎖️ 2020 – ‘Excellent PhD Graduate’ honor, University of Science and Technology of China (USTC)

Publication Top Noted

1️⃣ Enhanced electrochemical characteristics of MnO anode induced cobalt dopant for Li-ion batteries (2025) – 0 citations 🔋⚡📄
2️⃣ Ca/Li Synergetic-Doped Na0.67Ni0.33Mn0.67O2 to Realize P2-O2 Phase Transition Suppression for High-Performance Sodium-Ion Batteries (2024) – 0 citations 🔬🔋📄
3️⃣ Amino Group-Aided Efficient Regeneration Targeting Structural Defects and Inactive FePO4 Phase for Degraded LiFePO4 Cathodes (2024) – 0 citations 🔄⚙️🔋📄
4️⃣ Regulation of Sulfur Atoms in MoSx by Magneto-Electrodeposition for Hydrogen Evolution Reaction (2024) – 1 citation 🧪⚛️📄
5️⃣ Two Birds with One Stone: V4C3 MXene Synergistically Promoted VS2 Cathode and Zinc Anode for High-Performance Aqueous Zinc-Ion Batteries (2024) – 11 citations 🔋⚡📄
6️⃣ Recent progress in critical electrode and electrolyte materials for flexible zinc-ion batteries (2024) – 1 citation 📖🔬⚡📄
7️⃣ Surface Modification Driven Initial Coulombic Efficiency and Rate Performance Enhancement of Li1.2Mn0.54Ni0.13Co0.13O2 Cathode (2024) – 1 citation 🔬⚙️📄
8️⃣ Mo2N/CoN nanotube with synergistic reaction of intercalation and conversion enables high-performance lithium-ion batteries (2023) – 1 citation ⚡🔋📄
9️⃣ Carbon Foam-Supported VS2 Cathode for High-Performance Flexible Self-Healing Quasi-Solid-State Zinc-Ion Batteries (2023) – 17 citations 🔋💡📄
🔟 Magneto-electrochemistry driven ultralong-life Zn-VS2 aqueous zinc-ion batteries (2023) – 12 citations ⚡🔬📄

Jong-Han Lee | Smart Materials | Best Researcher Award

Jong-Han Lee | Smart Materials | Best Researcher Award

Prof. Dr. Jong-Han Lee, Inha University, South Korea.

Dr. Jong-Han Lee 🎓 is a Professor and Head of the Department of Civil Engineering at Inha University, Korea. His expertise spans hazard risk analysis, smart materials, earthquake-resistant design, and structural resilience 🏗️. With a Ph.D. from Georgia Institute of Technology, he has held key roles in academia and industry, including POSCO E&C and Daegu University. A prolific researcher, he leads cutting-edge projects in digital twins, CFRP reinforcements, and AI-driven structural analysis 🧠🔬. He actively contributes to global conferences and editorial boards, shaping the future of civil engineering innovation 🌍.

Publivation Profiles

Scopus
Googlescholar

Education and Experience

✅ Ph.D. in Civil Engineering – Georgia Institute of Technology (2010)
✅ M.S. in Civil Engineering – KAIST, Korea (2004)
✅ B.S. in Civil Engineering – KAIST, Korea (2002)

🏛️ Professor & Head – Inha University (2024–Present)
🏛️ Associate Professor – Inha University (2019–2024)
🏛️ Assistant Professor – Inha University (2019)
🏛️ Assistant Professor – Daegu University (2013–2019)
🏗️ Section Manager – POSCO E&C (2011–2013)
🔬 Postdoctoral Researcher – Georgia Tech (2010–2011)
🔍 Graduate Research Assistant – Georgia Tech & KAIST

Suitability summary for best researcher Award

Dr. Jong-Han Lee, Ph.D., P.E., a distinguished Professor in the Department of Civil Engineering at Inha University, has been honored with the Best Researcher Award for his outstanding contributions to structural engineering, hazard risk analysis, and smart material applications. His extensive research and leadership in earthquake-resistant design, structural integrity assessment, and smart infrastructure development have significantly advanced the field, making him a deserving recipient of this prestigious accolade.

Professional Development

Dr. Lee has significantly impacted structural engineering, specializing in hazard risk mitigation, earthquake resilience, and smart materials integration 🏗️. As a conference chairman, editor-in-chief, and research leader, he actively contributes to advancing construction safety and sustainability 🌍. His leadership in Korea’s major civil engineering committees fosters global collaborations. With expertise in AI-driven diagnostics and digital twin technologies, his work bridges research and real-world applications 🤖📊. Committed to innovation, he continues to pioneer advanced construction materials, ensuring structural integrity and sustainability for future generations 🏢💡.

Research Focus

Jong-Han Lee, Ph.D., P.E., focuses on structural resilience 🏗️hazard risk analysis 🌍, and earthquake-resistant design ⚡. His research spans smart materials and structures 🧠, integrating field data with numerical simulations 📊 to enhance structural integrity 🏢. He develops advanced monitoring systems 🔍 and digital twin technologies 🖥️ for predictive maintenance. His work on carbon fiber reinforcement 🏗️ and self-healing cementitious materials 🏠 aims at sustainable infrastructure 🌱. With expertise in high-speed rail bridge dynamics 🚄 and concrete deterioration analysis 🏚️, his research contributes to safer, longer-lasting structures in civil engineering.

Awards and Honors

🏅 Best Paper Award – Korea Society of Civil Engineers
🏅 Outstanding Research Award – Korea Concrete Institute
🏅 Excellence in Engineering Innovation – Korea Institute for Structural Maintenance
🏅 Top 10 Influential Civil Engineers in Korea – 2023
🏅 Best Young Researcher Award – Korean Institute of Bridge and Structural Engineers
🏅 Outstanding Editor Award – KSCE Journal of Civil Engineering
🏅 Government Research Grant Awards – National Research Foundation of Korea

Publication Top Noted

1️⃣ Flexural capacity of fiber reinforced concrete with a consideration of concrete strength and fiber content – Construction and Building Materials (2017) – 📖 Cited by: 173 🏗️

2️⃣ Influence of concrete strength combined with fiber content in the residual flexural strengths of fiber reinforced concrete – Composite Structures (2017) – 📖 Cited by: 148 🏢

3️⃣ Investigation of extreme environmental conditions and design thermal gradients during construction for prestressed concrete bridge girders – Journal of Bridge Engineering (2012) – 📖 Cited by: 105 🌡️🌉

4️⃣ Application of probabilistic neural networks for prediction of concrete strength – Journal of Materials in Civil Engineering (2005) – 📖 Cited by: 101 🤖🔢

5️⃣ Analysis of thermal environmental effects on precast, prestressed concrete bridge girders: temperature differentials and thermal deformations – Advances in Structural Engineering (2012) – 📖 Cited by: 95 🌞🌉

6️⃣ Crack-closing performance of NiTi and NiTiNb fibers in cement mortar beams using shape memory effects – Composite Structures (2018) – 📖 Cited by: 67 🔩🏗️

7️⃣ Experimental study of the reinforcement effect of macro-type high strength polypropylene on the flexural capacity of concrete – Construction and Building Materials (2016) – 📖 Cited by: 64 🏗️🔬

8️⃣ A vision-based dynamic rotational angle measurement system for large civil structures – Sensors (2012) – 📖 Cited by: 63 📸🏢

 

Bahadır Kopçasız | Material Science | Best Researcher Award

Bahadır Kopçasız | Material Science | Best Researcher Award

Assist. Prof. Dr. Bahadır Kopçasız, Istanbul Gelisim University, Turkey.

Publication Profile

Orcid

Education and Experience

  • B.Sc. in Mathematics (Karadeniz Technical University, 2015) 🧮
  • M.Sc. in Applied Mathematics (Yeditepe University, 2018) 🧑‍🔬
  • Ph.D. in Applied Mathematics (Bursa Uludağ University, 2024) 🎓
  • Assistant Professor at Istanbul Gelişim University (Current) 🏫
  • Published extensively in SCI-Expanded journals, including Q1 and Q2 categories 📝
  • Frequent presenter at international scientific conferences 🌍

Summary Suitability For the award

Dr. Bahadır Kopçasız, a distinguished academic and researcher at İstanbul Gelişim University, is a leading figure in applied mathematics, particularly in nonlinear dynamics, optical solitons, and fractional-order equations. With a robust academic background, including a Ph.D. from Bursa Uludağ University, Dr. Kopçasız has consistently demonstrated exceptional research capabilities, making him an ideal candidate for the prestigious Best Researcher Award. His contributions have not only advanced the field of mathematical physics but also set a benchmark for innovation and scholarly excellence.

Professional Development

Dr. Bahadır Kopçasız actively engages in mathematical research, focusing on applied and computational mathematics with a special interest in nonlinear Schrödinger equations, soliton dynamics, and fractional-order systems. He has collaborated on cutting-edge projects, showcasing his ability to derive novel solutions using advanced mathematical frameworks. By exploring multi-wave interactions, chaotic behaviors, and bifurcation analyses, his work has paved the way for new insights into optical and geophysical systems. Additionally, Dr. Kopçasız is committed to mentoring aspiring mathematicians, contributing to the global scientific community with impactful research and presentations. 🔬🌟

Research Focus

Publication Top Notes

  • 📖 Exploration of Soliton Solutions for the Kaup–Newell Model Using Two Integration Schemes in Mathematical Physics (2025)
  • 📖 Unveiling New Exact Solutions of the Complex-Coupled Kuralay System Using the Generalized Riccati Equation Mapping Method (2024)  🌟
  • Contributors: Bahadır Kopçasız
  • 📖 Inquisition of Optical Soliton Structure and Qualitative Analysis for the Complex-Coupled Kuralay System (2024) 🌟
  • 📖 Innovative Integration Technologies for Kaup-Newell Model: Sub-Picosecond Optical Pulses in Birefringent Fibers (2024)
  • 📖 Solitonic Structures and Chaotic Behavior in the Geophysical Korteweg–de Vries Equation: A μ-Symmetry and g′-Expansion Approach (2024)
  • 📖 μ-Symmetries and μ-Conservation Laws for the Nonlinear Dispersive Modified Benjamin-Bona-Mahony Equation (2023) 🌟
  • 📖 Analytical Soliton Solutions of the Fractional Order Dual-Mode Nonlinear Schrödinger Equation with Time-Space Conformable Sense by Some Procedures (2023) – 🌟

 

Parami Ama Shakya | Materials | Best Researcher Award

Parami Ama Shakya | Materials | Best Researcher Award

Ms. Parami Ama Shakya, University of Kelaniya, Sri Lanka.

Publication profile

Orcid

Education and Experience

📚 Education
  • M.Phil in Physics – University of Kelaniya (reading) 🎓
  • B.Sc. Honours in Physics – University of Kelaniya (2017–2021) 🎓
    • Key Courses: Physics, Pure Mathematics, Electronics 📐
    • GPA: 3.57 (Second Upper Class) 🌟
  • G.C.E. Advanced Level Examination – Physical Science Stream (2016) 📜
  • G.C.E. Ordinary Level Examination – 2012 📝
💼 Experience
  • Temporary Demonstrator (Aug 2022 – Dec 2022) – Department of Physics & Electronics, University of Kelaniya 📊
  • Temporary Research Assistant (Dec 2022 – Oct 2024) – University of Kelaniya 🔬
  • Physicist (Dec 2024 – Present) – Sri Lanka Scientific Service 🧪

Suitability For The Award

Ms. Parami Ama Shakya, a dedicated physicist currently pursuing her M. Phil in Physics at the University of Kelaniya, Sri Lanka, is an outstanding candidate for the Best Researcher Award. With a B.Sc. Honours in Physics and a second upper class GPA of 3.57, Parami’s research has shown exceptional depth and innovation in the areas of thin-film electroplating, photoanode design for solar cells, and electrochemical properties of materials. Her continued research contributions have demonstrated her potential as a leading figure in the realm of material science and renewable energy applications.

Professional Development 

Publications Top Notes

“A Study on Cu Thin-Film Electroplated TiO₂ Photoanodes for Applications in Natural Dye-Sensitized Solar Cells,Crystals, 2024 📄 “

 

Ajalesh Balachandran Nair | Intelligent polymers | Best Researcher Award

Ajalesh Balachandran Nair | Intelligent polymers | Best Researcher Award

Dr. Ajalesh Balachandran Nair , Union Christian College, India.

Publication profile

Scopus

Education and Experience

  • Post Doctoral Research
    2014, Brain Korea Post Doctoral Fellowship (BK-21 PLUS), Chonbuk National University, South Korea. 🎓
  • Ph.D. in Polymer Science
    January 2014, Cochin University of Science and Technology. 📚
  • Post Graduate Diploma in Polymer Science
    2012, Indian Rubber Institute & IIT Kharagpur. 🎓
  • M.Sc. in Chemistry
    2006, Mahatma Gandhi University, Kottayam. 🥇
  • B.Sc. in Chemistry
    2004, Mahatma Gandhi University, Kottayam. 🎓
  • Teaching Experience
    9 years (Union Christian College, FISAT, CUSAT). 👨‍🏫

Suitability for The Award

Dr. Ajalesh Balachandran Nair is a highly suitable candidate for the Best Researcher Awards due to his extensive contributions to the field of chemistry, particularly in polymer science and nanomaterials. His research, teaching experience, and involvement in significant projects highlight his dedication to advancing knowledge and innovation in his discipline.

Professional Development (💼🔬)

Research Focus 🧫🧬

Awards and Honors (🏆🎖️)

  • Brain Korea Post Doctoral Fellowship (BK-21 Plus) 🎖️
  • UGC-BSR Research Fellowship (2012, 2013) 🏆
  • Junior Research Fellowship (DRDO) 🥇
  • Junior Research Fellowship (KSCSTE) 🎓
  • Member of Indian Rubber Institute 🏅
  • Membership in Society of Plastics Engineers 🌟

Publication 

  • Biodegradable pH sensor in packaging material using anthocyanin from banana bracts – Thottathil Nazar, M.I., George, T.S., Muhammadaly, S.A., Chemmarickal Dominic, M.D., Nair, A.B. (2024) Biomass Conversion and Biorefinery, 14(17), pp. 20229–20240. Cited by: 3 📦
  • Environmental Effects and Potential Solutions in the Realm of Biomass Management – Nair, A.B., Francis, V., Nandakumar, N. (2024) Materials Horizons: From Nature to Nanomaterials, Part F3306, pp. 313–335. Cited by: 0 🌱
  • Sensory Analysis and Brain Imaging of Flavors and Fragrances – Nair, A.B., Simi Pushpan, K., Varghese, N., Joys, M. (2023) ACS Symposium Series, 1433, pp. 385–403. Cited by: 0 🧠
  • Biopolymers as Engineering Materials – Shasiya, P.S., Pushpan, K.S., Nair, A.B. (2023) Handbook of Biopolymers, pp. 627–653. Cited by: 0 📘
  • Gas Barrier Properties and Applications of Nanocellulose-Based Materials – Nandakumar, N., Nair, A.B. (2023) Handbook of Biopolymers, pp. 1263–1279. Cited by: 1 🛡️
  • Application of UPR in pipeline corrosion: protection and applications – Hariharan, M., Panikkaveettil Shamsudheen, S., Varghese, N., Nair, A.B. (2023) Applications of Unsaturated Polyester Resins: Synthesis, Modifications, and Preparation Methods, pp. 309–340. Cited by: 2 🔧
  • Unsaturated polyester resins and their classification – Philips, D.S., Nair, A.B. (2023) Applications of Unsaturated Polyester Resins: Synthesis, Modifications, and Preparation Methods, pp. 17–24. Cited by: 0 📚
  • Application of UPR in marine applications – Stephy, A., Varghese, N., Joys, M., Francis, T., Nair, A.B. (2023) Applications of Unsaturated Polyester Resins: Synthesis, Modifications, and Preparation Methods, pp. 223–245. Cited by: 0 🌊