Savidh Khan | Materials Science | Best Researcher Award

Savidh Khan | Materials Science | Best Researcher Award

Dr. Savidh Khan | Thapar Institute of Engineering & Technology | India

Dr. Savidh Khan is a distinguished physicist and materials scientist currently serving as an Assistant Professor in the Department of Physics at RIMT University, Mandi Gobindgarh, Punjab, India. His academic and research journey reflects a deep commitment to advancing knowledge in materials science and applied physics, with a particular focus on the synthesis, characterization, and application of advanced functional materials. He earned his Ph.D. in Physics and Materials Science from Thapar Institute of Engineering and Technology, where his research centered on undoped and doped vanadium oxides for solid oxide fuel cell applications under the supervision of Professor Kulvir Singh. His earlier academic achievements include an M.Tech. in Metallurgical and Materials Engineering from Thapar University, an M.Phil. and M.Sc. in Physics, and a B.Sc. in Physics, Chemistry, and Mathematics from C.C.S. University, Meerut, India. Over the years, Dr. Khan has developed expertise in experimental materials science, particularly in preparing glasses and ceramics using melt-quench and solid-state reaction techniques. He is highly skilled in utilizing a range of advanced characterization tools such as X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), Raman spectroscopy, scanning electron microscopy (SEM), UV-visible spectroscopy, thermogravimetric and differential thermal analysis (TG/DTA), and impedance spectroscopy to investigate material structure, stability, and performance. His research spans several critical areas, including solid oxide fuel cells, lithium-ion batteries, radiation dosimeters, upconversion materials, bioceramics, and glass-ceramics for biomedical and energy applications, with a strong focus on improving material functionality and sustainability. Dr. Khan’s teaching experience is equally impressive, having served at reputed institutions including Thapar Institute of Engineering and Technology, S.I.T.E. Meerut, Meerut College, and D.N. College, where he has effectively combined his research expertise with classroom teaching to inspire and mentor students. He has successfully supervised one Ph.D. scholar and continues to guide four ongoing doctoral candidates in cutting-edge materials research. His outstanding academic contributions have been recognized through several prestigious awards and fellowships, including the GATE Fellowship from the Ministry of Human Resource Development (MHRD), Government of India, and the Direct-SRF fellowship from the Council of Scientific and Industrial Research (CSIR), New Delhi. He also received the Best Poster Award at the Conference on Microscopy in Materials Science for his innovative research presentation. With numerous publications, a growing citation record, and a solid h-index, Dr. Savidh Khan continues to make significant contributions to the fields of materials science and applied physics, advancing technologies that address challenges in energy storage, biomedical applications, and sustainable materials development.

Profile: Scopus | Orcid | GoogleScholar | Researchgate 

Featured Publications 

Khan, S., Kaur, G., & Singh, K. (2017). Effect of ZrO₂ on dielectric, optical and structural properties of yttrium calcium borosilicate glasses. Ceramics International, 43(1), 722–727.

Khan, S., & Singh, K. (2019). Effect of MgO on structural, thermal and conducting properties of V₂₋ₓMgₓO₅₋δ (x = 0.05–0.30) systems. Ceramics International, 45(1), 695–701.

Kaur, A., Khan, S., Kumar, D., Bhatia, V., Rao, S. M., Kaur, N., Singh, K., Kumar, A., … (2020). Effect of MnO on structural, optical and thermoluminescence properties of lithium borosilicate glasses. Journal of Luminescence, 219, 116872.

Khan, S., & Singh, K. (2020). Structural, optical, thermal and conducting properties of V₂₋ₓLiₓO₅₋δ (0.15 ≤ x ≤ 0.30) systems. Scientific Reports, 10(1), 1089.

Jaidka, S., Khan, S., & Singh, K. (2018). Na₂O doped CeO₂ and their structural, optical, conducting and dielectric properties. Physica B: Condensed Matter, 550, 189–198.

Weijie Zhang | Design of Materials | Best Researcher Award

Weijie Zhang | Design of Materials | Best Researcher Award

Dr. Weijie Zhang Lecturer at Chongqing University of Technology | China

Dr. Weijie Zhang is a Lecturer at the School of Science, Chongqing University of Technology, China. He is dedicated to teaching and research in materials science, with a particular emphasis on advanced energy storage technologies such as supercapacitors and emerging battery systems.

Academic Background

Dr. Zhang completed his doctoral studies at Southeast University, China, where his research focused on the application of metal–organic frameworks (MOFs) and their derivatives for supercapacitors. His work contributed to the deeper understanding of how these materials can enhance the efficiency and stability of electrochemical devices. He began his academic journey at Chongqing University of Technology, where he obtained his undergraduate degree in physics. During this period, he developed a strong foundation in material sciences and demonstrated early excellence through both academic and research achievements.

Research Focus

Dr. Zhang’s research primarily revolves around the development of energy storage materials and devices. His work includes the exploration of graphene composites, MOFs, and related derivatives to improve the performance of supercapacitors, sodium-ion batteries, and zinc-ion batteries. In addition to experimental studies, he is actively engaged in first-principles computational methods, employing simulation tools such as VASP and Materials Studio to complement experimental results. This combination of theory and practice ensures that his research outcomes are scientifically robust and technologically innovative.

Work Experience

As a Lecturer at Chongqing University of Technology, Dr. Zhang is actively involved in teaching, supervising research projects, and mentoring students in physics and materials science. Prior to this position, he pursued extensive doctoral research at Southeast University, where he worked on energy storage materials and developed innovative approaches for the application of MOFs and graphene composites in supercapacitor devices. His professional journey reflects a strong balance of research, teaching, and mentorship.

Key Contributions

Dr. Zhang has made valuable contributions to the advancement of high-performance energy storage devices. His research has focused on enhancing the energy density, durability, and stability of supercapacitors and batteries. By integrating computational modeling with laboratory experiments, he has provided new insights into the design and optimization of electrode materials. His work continues to support the development of sustainable and efficient energy storage solutions.

Awards & Recognition

Dr. Zhang has received several awards and honors in recognition of his academic excellence and research contributions. He has been acknowledged with national and institutional scholarships and recognized as an outstanding graduate at multiple stages of his academic career. These achievements highlight his dedication, consistent performance, and impact in the field of energy materials.

Professional Roles & Memberships

Dr. Zhang is an active participant in academic communities and has presented his research at leading conferences on energy storage and electrochemical systems. His engagement in these forums underscores his commitment to scientific collaboration, knowledge exchange, and the dissemination of innovative research outcomes.

Profile Links: Scopus | Orcid | Researhgate 

Featured Publications 

Zhang, W. J., et al. (2024). In situ growth of binder-free CoNi₀.₅-MOF/CC electrode for high-performance flexible solid-state supercapacitor application. Nanoscale, 19, 9516–9524.

Zhang, W. J., et al. (2024). C₃N₄ template-based N-doped porous carbon cathode for zinc-ion hybrid capacitors. ACS Applied Nano Materials, 7, 24778–24787.

Zhang, W. J., et al. (2018). N/S co-doped three-dimensional graphene hydrogel for high-performance supercapacitor. Electrochimica Acta, 278, 51–60.

Zhang, W. J., et al. (2021). High-performance Bi₂O₂CO₃/rGO electrode material for asymmetric solid-state supercapacitor application. Journal of Alloys and Compounds, 855, Article 157094.

Zhang, W. J., et al. (2021). Graphene–carbon nanotube@cobalt derivatives from ZIF-67 for all-solid-state asymmetric supercapacitor. Applied Surface Science, 568, 150929.

Impact Statement

Dr. Zhang envisions contributing to the global advancement of sustainable energy technologies through research in high-performance, environmentally friendly energy storage systems. His approach combines experimental innovation with computational simulations, enabling the predictive design of functional materials and devices. Through his work, he aims to foster scientific progress while supporting the transition toward cleaner energy solutions for society and industry.

Shujiang Liu | Glass Materials | Best Researcher Award

Shujiang Liu | Glass Materials | Best Researcher Award

Prof. Shujiang Liu | Qilu University of Technology | China

Shujiang Liu, Ph.D., is a Professor at the School of Materials Science and Engineering, Qilu University of Technology, with over two decades of dedicated experience in the teaching and research of glass materials. His scholarly expertise spans across high-strength glasses, transparent glass-ceramics, and optical glasses, making significant contributions to both the academic community and industrial applications of advanced glass science. Over the years, Professor Liu has actively engaged in professional service, holding key roles such as member of the Glass Branch of the Chinese Ceramics Society, Chairman of the Shandong Glass Standards Committee, and member of the Expert Committee of the China Household Glass Association. He has authored more than 75 peer-reviewed publications in internationally recognized journals, which have been cited 916 times by 814 documents, with an h-index of 15. His research contributions provide original insights into glass crystallization, sintering behavior, phase separation, and novel glass-ceramic applications, while he also serves as a reviewer for leading journals including the Journal of Non-Crystalline Solids, Ceramics International, and the Journal of the American Ceramic Society. His recent research highlights include studies on the influence of trace elements such as NiO on soda-lime-silicate and aluminosilicate glasses, the mixed-alkali effect in borate glass systems, and the role of phase separation in self-limited crystallization and crack growth resistance in phosphosilicate glasses. His team has also advanced knowledge on glass powders’ sintering behavior, early densification effects on glass–calcium carbonate mixtures, and the development of glass-ceramics as high-performance lithium-ion battery anode materials. With a consistent record of collaborative research and impactful publications from 2020 to 2025, Professor Liu continues to push the boundaries of glass science while fostering innovation in materials engineering. His work bridges fundamental research and applied technology, strengthening China’s position in glass science and standardization efforts worldwide.

Profile: Scopus | Researchgate

Featured Publications 

  • Jiang, X., Liu, S., Shan, Z., Lan, S., & Shen, J. (2020). Influence of traces of NiO on crystallization of soda-lime-silicate glass. Journal of the European Ceramic Society, 40(15), 6014–6022.

  • Liu, S., Tang, W., Ma, J., Zhang, Y., & Yue, Y. (2020). Li₂TiSiO₅ glass-ceramic as anode materials for high performance lithium ion batteries. ACS Applied Energy Materials, 3(10), 9760–9768.

  • Shan, Z., Zhang, Y., Liu, S., Tao, H., & Yue, Y. (2020). Mixed-alkali effect on hardness and indentation-loading behavior of a borate glass system. Journal of Non-Crystalline Solids, 548, 120314.

  • Zhou, Y., Zhang, J., Chen, Y., & Liu, S. (2021). On the isothermal sintering behavior and transparency of glass powders. Journal of Non-Crystalline Solids, 571, 121024.

  • Chen, Y., Liu, S., Zhou, Y., Shang, P., Shan, Z., & Zhang, J. (2022). Effect of Al₂O₃ content on amorphous phase-separation and self-limited crystallization of phosphosilicate glasses. Journal of Non-Crystalline Solids, 584, 121505.

  • Shang, P., Liu, S., Zhao, F., & Yi, Z. (2023). Effect of early densification on foaming process of glass–calcium carbonate mixture. Powder Technology, 424, 118560.

  • Zhao, F., Liu, S., Shang, P., Shan, Z., Lu, Q., Zhang, J., Su, Y., & Yi, K. (2023). Transparent glaze containing high-alumina glass frit: Batch-to-melt conversion. Journal of Non-Crystalline Solids, 617, 122496.

  • Li, H., Liu, S., Chen, Y., Shang, P., & Shan, Z. (2023). Effect of phase separation of a phosphosilicate glass on self-limited crystallization and slow crack growth. Physics and Chemistry of Glasses: European Journal of Glass Science and Technology Part B, 64(3), 110–119.

Wenqing Wang | Design of Materials | Best Researcher Award

Wenqing Wang | Design of Materials | Best Researcher Award

Prof. Dr. Wenqing Wang | Anhui Normal University | Best Researcher Award

Dr. Wenqing Wang is a prominent researcher in the field of chemistry, currently working at the College of Chemistry and Material Science, Anhui Normal University, Wuhu, Anhui, China. Born on February 19, 1987, she has dedicated her career to advancing the design, synthesis, and characterization of novel organometallic complexes and radicals. Dr. Wang completed her Bachelor of Science in Chemistry at Hebei Normal University in 2013 and went on to earn her Ph.D. in Chemistry from Nanjing University in 2018 under the supervision of Professor Xinping Wang, with her doctoral thesis titled “Syntheses and Properties of Chromium Radicals and Tetraazacyclophane Diradicals.” Her research focuses on organometallic complex studies, including the development of innovative radicals, the activation of small organic molecules, and the exploration of new chemical bond transformations. Since 2018, she has been contributing to both research and education at Anhui Normal University, mentoring students while actively engaging in cutting-edge chemical research. Dr. Wang’s scientific impact is reflected in her 22 publications, 317 citations across 277 documents, and an h-index of 11, highlighting her growing influence in the field. Her work bridges fundamental chemistry with practical applications, emphasizing the potential of radical-based systems in chemical synthesis and materials development. Recognized for her meticulous approach and innovative methodologies, she continues to advance the understanding of organometallic systems and radical chemistry, making significant contributions to both theoretical insights and practical applications. Dr. Wang remains committed to fostering international collaborations, guiding emerging chemists, and expanding the frontiers of chemical research with a focus on novel radicals and organometallic compounds.

Profile: Scopus | Orcid 

Featured Publications 

Wang, W., Sun, P., Liu, X., Zhang, X., Zhang, L., Tan, Y.-z., & Wang, X. (2024). Radical cations of bilayer nanographenes. Organic Letters.

Wang, W., Li, S., Wang, Q., Ding, X., Fang, Y., Ruan, H., Zhao, Y., & Wang, X. (2022). S = 1/2 tetracene monoradical cation/anion: Ion-based one-dimensional antiferromagnetic chains. Chemical Communications.

Wang, W., Wang, Q., Ding, X., Liu, X., Sun, P., & Wang, X. (2022). Synthesis and chemical redox studies of half-sandwich chromium carbonyl azobenzenes. Organometallics.

Yang, W., Wang, W., Zhang, L., Zhang, L., Ruan, H., Feng, Z., Fang, Y., & Wang, X. (2021). Persistent 2c–3e σ-bonded heteronuclear radical cations centered on S/Se and P/As atoms. Chemical Communications.

Wang, W. (2020). Stable, yet “naked”, azo radical anion ArNNAr(-) and dianion ArNNAr(2-) (Ar = 4-CN-2,6-(i)Pr2-C6H2) with selective CO2 activation. Chemical Communications.

Wang, W. (2018). An isolable diphosphene radical cation stabilized by three-center three-electron π-bonding with chromium: End-on versus side-on coordination. Angewandte Chemie International Edition.

Wang, W. (2018). S = 1 tetraazacyclophane diradical dication with robust stability: A case of low-temperature one-dimensional antiferromagnetic chain. Journal of the American Chemical Society.

Wang, W. (2017). Air-stable diradical dications with ferromagnetic interaction exceeding the thermal energy at room temperature: From a monomer to a dimer. Science China Chemistry.

Ali Akbarpour | Construction Materials | Best Researcher Award

Ali Akbarpour | Construction Materials | Best Researcher Award

Mr. Ali Akbarpour, University of Oklahoma, United States.

Ajeet Chandra | Material Synthesis | Best Researcher Award

Ajeet Chandra | Material Synthesis | Best Researcher Award

Dr. Ajeet Chandra, Kyung Hee University, Seoul, South Korea.

Dr. Kai Xiong | Material | Best Researcher Award

Dr. Kai Xiong | Material | Best Researcher Award

Dr. Kai Xiong , Yunnan University , China.

Dr. Kai Xiong, Ph.D., is a Professor at Yunnan University and a Master Supervisor. A high-level introduced young talent in Yunnan Province and a core faculty member at Donglu, he specializes in multi-scale simulation and the design of rare and high-entropy materials. He has led major research projects, including one National Natural Science Foundation of China (NSFC) project and multiple provincial programs. With over 100 published papers, five software copyrights, and a textbook, he has significantly contributed to material science. His work bridges fundamental research with industrial applications, enhancing innovation in non-ferrous metal materials. 🔬📖

Publication Profile

Scopus
Orcid

Education & Experience 🎓🔬

  • Ph.D. in Materials Science, specialized in multi-scale simulation and material design 🏗️
  • Professor, Yunnan University, mentoring master’s students and conducting advanced research 📚
  • High-level Young Talent, recognized by Yunnan Province for academic excellence 🏅
  • Young & Middle-Aged Backbone Teacher, contributing to scientific advancement at Yunnan University 👨‍🏫
  • Principal Investigator, leading multiple national and provincial research projects 🔬
  • Industry Collaborations, working on enterprise-sponsored research for material innovation ⚙️

Suitability Summmary

Dr. Kai Xiong, a distinguished Professor at Yunnan University, is an ideal candidate for the Best Researcher Award due to his exceptional contributions to material science and engineering. As a high-level introduced young talent in Yunnan Province and a key faculty member at Yunnan University, he has significantly advanced the field of multi-scale simulation and the design of rare and precious non-ferrous metals and high-entropy materials. His research has had a profound impact on the development of next-generation materials, contributing both theoretically and practically to the field.

Professional Development 🚀

Dr. Kai Xiong has made remarkable strides in computational materials science, focusing on multi-scale simulation and the development of advanced non-ferrous and high-entropy materials. His expertise spans theoretical modeling and experimental validation, enabling breakthrough discoveries in material performance enhancement. He actively mentors students, contributes to industrial applications, and collaborates on national and provincial projects. His research has yielded patented innovations, software tools, and a specialized textbook. Through continuous learning and interdisciplinary collaboration, he pushes the boundaries of material science, bridging academia and industry to drive technological advancements in rare and precious metals. 🔍🔧📘

Research Focus 🔬💡

Dr. Kai Xiong specializes in the multi-scale simulation and design of rare and precious non-ferrous metals and high-entropy materials. His work integrates computational modeling, experimental validation, and industrial applications to enhance material properties. Key areas include atomic-level material behavior analysis, nanostructured alloy development, and mechanical and thermal stability optimization. His research plays a vital role in advanced manufacturing, aerospace, and electronic applications, improving material efficiency and sustainability. With a strong foundation in applied physics, chemistry, and engineering, he contributes to cutting-edge advancements that redefine the future of materials science. 🏗️⚡🔍

Awards & Honors 🏆🎖️

  • High-Level Young Talent, Yunnan Province 🏅
  • Young & Middle-Aged Backbone Teacher, Yunnan University 🎓
  • Principal Investigator of NSFC Project 🔬
  • Leader of Yunnan Province Major Science & Technology Programs 🚀
  • Published 100+ Research Papers in Prestigious Journals 📖
  • Author of a Specialized Material Science Textbook 📚
  • Holder of 5 Software Copyrights for Scientific Innovations 💻

Publication Top Notes

  • Machine learning inverse design of high-strength mid-temperature Ag-based solders

    • Journal: Materials & Design
    • Publication Date: April 2025
    • DOI: 10.1016/j.matdes.2025.113736
    • Contributors: Chengchen Jin, Kai Xiong, Yingwu Wang, Shunmeng Zhang, Yunyang Ye, Hui Fang, Aimin Zhang, Hua Dai, Yong Mao
  • Phase size induced anomalous plastic behavior in AuSn-Au₅Sn duplex alloy

    • Journal: Materials Science and Engineering: A
    • Publication Date: March 2025
    • DOI: 10.1016/j.msea.2025.147911
    • Contributors: Rui Ma, Yingjie Sun, Hualong Ge, Wenyan Zhou, Haijun Wu, Lihua Ma, Shaoping Lu, Shunmeng Zhang, Zhiwei Xia, Kai Xiong, et al.
  • High‐throughput calculation integrated with stacking ensemble machine learning for predicting elastic properties of refractory multi‐principal element alloys

    • Journal: Materials Genome Engineering Advances
    • Publication Date: March 12, 2025
    • DOI: 10.1002/mgea.70004
    • Contributors: Chengchen Jin, Kai Xiong, Congtao Luo, Hui Fang, Chaoguang Pu, Hua Dai, Aimin Zhang, Shunmeng Zhang, Yingwu Wang
  • Strength-ductility trade-off in NbTaTiV refractory multi-principal element alloys

    • Journal: Materials Science and Engineering: A
    • Publication Date: February 2025
    • DOI: 10.1016/j.msea.2024.147677
    • Contributors: Yingwu Wang, Kai Xiong, Lingjie Yang, Shunmeng Zhang, Hui Fang, Hua Dai, Chengchen Jin, Yunyang Ye, Congtao Luo, Junjie He, et al.
  • Hf-induced strengthening and lattice distortion in HfNbTaTiV refractory multi-principal element alloys

    • Journal: Journal of Materials Research and Technology
    • Publication Date: January 2025
    • DOI: 10.1016/j.jmrt.2024.12.256
    • Contributors: Yingwu Wang, Kai Xiong, Wei Li, Chengchen Jin, Haijun Wu, Hua Dai, Zihang Yang, Hongmo Yang, Shunmeng Zhang

 

Mr. Issam Forsal | Materials Science | Best Researcher Award

Mr. Issam Forsal | Materials Science | Best Researcher Award

Mr. Issam Forsal , Université Sultan Moulay Slimane , Morocco.

Mr. Issam Forsal, is an Authorized Higher Education Professor and Head of the Process Engineering Department at the Higher School of Technology, Beni Mellal, Sultan Moulay Slimane University 🇲🇦. Specializing in Analytical Chemistry, he also serves as the Deputy Director of the Laboratory of Applied Engineering and Technology (LITA) 🏛️. Since 2015, he has been a teacher-researcher, contributing to materials science, electrochemical kinetics, and corrosion studies. His expertise extends to financial and economic management, having previously served as a project manager at the university 🎓💡.

Publication Profile

Scopus
Orcid

Education & Experience 🎓🔬

Education:
  • Specialization in Analytical Chemistry 🧪
  • Advanced training in Process Engineering and Materials Science ⚙️
Experience:
  • Since 2015: Professor & Researcher at Higher School of Technology, Beni Mellal 👨‍🏫
  • 2011-2016: Facilitator in Understanding Business Program (CLE) 🤝📈
  • 2010-2014: Project Manager at Sultan Moulay Slimane University (Economic & Financial Affairs) 💰🏛️
  • Expertise in budget management, audits, purchasing processes, and research project execution 📊

Summary Suitability

Mr. Issam Forsal is a distinguished researcher and educator specializing in Analytical Chemistry, with significant contributions to corrosion inhibition, electrochemical analysis, and eco-friendly material applications. As Deputy Director of the Laboratory of Applied Engineering and Technology (LITA) at Sultan Moulay Slimane University, Morocco, he has demonstrated exceptional leadership in advancing scientific research. His work on green corrosion inhibitors, published in high-impact journals, has provided innovative solutions for industrial applications, making him a strong contender for this prestigious award.

Professional Development 📚💼

Mr. Issam Forsal, has demonstrated strong professional growth in teaching, research, and university management. His academic contributions span materials science, electrochemical kinetics, and analytical chemistry 🧪⚛️. With a focus on corrosion, surface treatment, and experimental design, he integrates innovative methodologies into his teachings 📖✨. His leadership extends beyond the classroom, as he played a key role in university financial and project management, ensuring efficient resource allocation 💰📑. As a Deputy Director at LITA, he actively promotes technological advancements and fosters interdisciplinary research collaborations 🤝🔍.

Research Focus 🔬📑

Mr. Issam Forsal research primarily revolves around Analytical Chemistry and Process Engineering, with a strong emphasis on materials science, corrosion mechanisms, and electrochemical kinetics 🧪🛠️. His studies contribute to the development of innovative corrosion protection techniques and surface treatment methodologies ⚛️🔍. Additionally, he explores experimental design strategies for chemical analysis and industrial applications 📊⚙️. His work also intersects with environmental chemistry, focusing on sustainable and eco-friendly material processing techniques 🌱🔬. Through collaborations within LITA, he integrates cutting-edge analytical methods to enhance industrial and academic research outcomes 🚀📖.

Awards & Honors 🏆🎖️

🏅 Recognized for excellence in higher education teaching and research 👨‍🏫📚
🏅 Acknowledged for contributions to analytical chemistry and materials science 🧪⚛️
🏅 Honored for leadership in financial and economic management in academia 💰🏛️
🏅 Received multiple grants for research in electrochemical kinetics and surface treatment 🔬🔍
🏅 Appreciation for mentoring and academic program facilitation at Sultan Moulay Slimane University 🎓💡

Publication Top Notes

1️⃣ Investigation of Ziziphus Lotus Leaves Extract Corrosion Inhibitory Impact on Carbon Steel in a Molar Hydrochloric Acid Solution
📌 Portugaliae Electrochimica Acta, 2023 | Journal article
📄 DOI: 10.4152/pea.2023410203
📑 ISSN: 1647-1571
👥 Contributors: S. Lahmady, O. Anor, I. Forsal, et al.

2️⃣ Electrochemical Examination of an Eco-friendly Corrosion Inhibitor “Almond Flower Extract” for Carbon Steel in Acidic Medium (1 M HCl)
📌 Analytical and Bioanalytical Electrochemistry, 2022 | Journal article
📄 EID: 2-s2.0-85131576767
📑 ISSN: 2008-4226
👥 Contributors: S. Lahmady, O. Anor, I. Forsal, H. Hanin, K. Benbouya

3️⃣ An Experimental Investigation of a Date Seeds Hydro-acetonic Mixture Extract Inhibitor for Corrosion Inhibition of Carbon Steel in an Acidic Medium at High Temperatures
📌 Biointerface Research in Applied Chemistry, 2022-07-10 | Journal article
📄 DOI: 10.33263/briac133.271
📑 ISSN: 2069-5837

4️⃣ The Inhibition Action of Essential Oil of J. Juniperus Phoenicea on the Corrosion of Mild Steel in Acidic Media
📌 Portugaliae Electrochimica Acta, 2018 | Journal article
📄 DOI: 10.4152/pea.201802077
📄 EID: 2-s2.0-85040185247
👥 Contributors: Y. Elkhotfi, I. Forsal, E.M. Rakib, B. Mernari

5️⃣ Comparative Spectroscopic and Electrochemical Study of N-1 or N-2-Alkylated 4-Nitro and 7-Nitroindazoles
📌 Arabian Journal of Chemistry, 2017 | Journal article
📄 DOI: 10.1016/j.arabjc.2016.05.005
📄 EID: 2-s2.0-85006700464
👥 Contributors: G. Micheletti, A. Kouakou, C. Boga, P. Franchi, M. Calvaresi, L. Guadagnini, M. Lucarini, E.M. Rakib, D. Spinelli, D. Tonelli, et al.

Conclusion 🎖️

Mr. Issam Forsal  groundbreaking research in corrosion science, dedication to sustainable chemistry, and outstanding academic contributions make him a highly deserving candidate for the Best Researcher Award. His work has direct industrial applications, environmental impact, and scientific advancements, reflecting excellence in innovative research and academic leadership.

Rumyana Lazarova | Materials Science | Best Researcher Award

Rumyana Lazarova | Materials Science | Best Researcher Award

Prof. Dr. Rumyana Lazarova, Institute of Metal Science, Equipment and Technologies with Hydro- and Aerodynamics Centre, Bulgaria.

Yong Yu | Materials | Best Researcher Award

Yong Yu | Materials | Best Researcher Award

Dr. Yong Yu , Qingdao University of Technology , China.

Dr. Yong Yu is a dedicated researcher in civil engineering at the School of Civil Engineering, Qingdao University of Technology, China. His expertise lies in high-performance concrete, crumb rubber concrete, and steam-cured concrete. With a strong academic background and a passion for sustainable materials, Dr. Yu has contributed extensively to advancing concrete technology. His research aims to enhance durability, eco-friendliness, and structural performance in construction. He actively collaborates with academia and industry to implement innovative solutions in civil engineering. 📚🔬🏢

Publication Profile

Orcid
Scopus

Education & Experience 📖👷

  • Ph.D. in Civil Engineering – Specialized in advanced concrete materials 🎓🏗️
  • Professor at Qingdao University of Technology – Leading research in sustainable concrete 🏫🔬
  • Industry Collaboration – Works with construction firms on eco-friendly materials 🤝🏢
  • Published Researcher – Numerous papers on high-performance and rubberized concrete 📄📊

Suitability summary

Dr. Yong Yu, a distinguished researcher at the School of Civil Engineering, Qingdao University of Technology, China, is an exceptional candidate for the Best Researcher Award. His groundbreaking contributions to high-performance concrete, crumb rubber concrete, and steam-cured concrete have significantly advanced sustainable and durable construction materials. His expertise in optimizing concrete properties for enhanced strength, durability, and eco-friendliness makes him a leading innovator in civil engineering. 📚🌍

Professional Development 🔬🏗️

Dr. Yong Yu actively engages in cutting-edge research on sustainable concrete materials. His contributions focus on enhancing durability, strength, and environmental benefits in construction. He regularly publishes in top-tier journals, presents at international conferences, and collaborates with industry experts to develop innovative solutions. As a mentor, he supervises students and researchers in civil engineering, guiding them towards practical and impactful research. His work not only advances theoretical knowledge but also influences real-world construction practices, ensuring a balance between strength and sustainability🌍🏗️📚

Research Focus 🔍🏢

Dr. Yong Yu’s research is centered on developing high-performance, durable, and eco-friendly concrete materials. His focus includes:

  • High-Performance Concrete (HPC): Enhancing durability, strength, and resistance to extreme conditions 🏗️💪
  • Crumb Rubber Concrete: Utilizing recycled rubber to improve flexibility and sustainability 🌱♻️
  • Steam-Cured Concrete: Optimizing rapid curing processes for efficient construction 🏭🔥

His studies contribute to reducing carbon footprints, improving material longevity, and promoting sustainable construction worldwide. 🌍🔬🏢

Awards & Honors 🏆🎖️

  • Outstanding Researcher Award – Recognized for contributions to concrete innovation 🏅🏗️
  • Best Paper Award – Published groundbreaking research in material science 📜🏆
  • Excellence in Teaching Award – Acknowledged for mentoring and academic leadership 🎓👨‍🏫
  • Industry Innovation Recognition – Collaborated on sustainable construction projects 🏢♻️

Publication Top Notes

  • 🧪 “Molecular and structural basis of the dual regulation of the polycystin-2 ion channel by small-molecule ligands” (2024) – Proceedings of the National Academy of Sciences
  • 🧬 “Structural basis for human Cav1.2 inhibition by multiple drugs and the neurotoxin calciseptine” (2023) – Cell
  • 🔬 “The diverse effects of pathogenic point mutations on ion channel activity of a gain-of-function polycystin-2” (2023) – Journal of Biological Chemistry
  • 🧫 “Structures of the R-type human Cav2.3 channel reveal conformational crosstalk of the intracellular segments” (2022) – Nature Communications
  • 🧩 “Structural basis for the severe adverse interaction of sofosbuvir and amiodarone on L-type Cav channels” (2022) – Cell
  • 🧪 “The roles of two extracellular loops in proton sensing and permeation in human Otop1 channel” (2022) – Communications Biology
  • 🧬 “The ion channel TRPM7 regulates zinc depletion-induced MDMX degradation” (2021) – Journal of Biological Chemistry