Sunil Kumar Prajapati | Additive Manufacturing | Best Researcher Award

Sunil Kumar Prajapati | Additive Manufacturing | Best Researcher Award

Dr. Sunil Kumar Prajapati, Indian Institute Of Technology–Madras, India.

Yangyang Cheng | Additive Manufacturing | Best Researcher Award

Yangyang Cheng | Additive Manufacturing | Best Researcher Award

Dr. Yangyang Cheng, Yanshan University, China.

Yangyang Cheng is a doctoral candidate at the School of Mechanical Engineering, Yanshan University, specializing in piezoelectric ceramic materials. 🔬 His research focuses on performance analysis and preparation of piezoelectric ceramics, utilizing first-principles methods to explore their structural and electronic properties. 🏗️ He has published five academic papers 📄 and secured five invention patents. 🏅 Additionally, Cheng has contributed to major projects, including those funded by the National Natural Science Foundation of China and the State Key Laboratory of New Ceramic Materials. His work advances high-performance and stable piezoelectric devices for applications in electronic communication and piezoelectric driving. ⚙️

Publication Profile

Scopus

Education & Experience 🎓🔬

  • Doctoral Candidate (Ph.D.) in Mechanical Engineering, Yanshan University (Five-year combined Master’s and Ph.D. program) 🏫

  • Specializes in piezoelectric ceramics, additive manufacturing, and first-principles analysis 🔬

  • Published five academic papers in SCI and EI journals 📑

  • Secured five invention patents in mechanical design and materials science 🔖

  • Participated in two national research projects, including NSFC-funded studies and key laboratory initiatives 🔬

  • Engaged in research on high-precision microactuators using dual-flexible hinge stacked piezoelectric structures ⚙️

Summary Suitability

Dr. Yangyang Cheng , a doctoral candidate in Mechanical Engineering at Yanshan University, has demonstrated exceptional research capabilities in piezoelectric ceramics, additive manufacturing, and first-principles calculations. With an impressive portfolio of five published academic papers, five invention patents, and participation in multiple national research projects, he has made significant contributions to the field of advanced materials and precision engineering. His research has provided crucial insights into the mechanical and electronic properties of piezoelectric ceramics, making him a deserving recipient of the Best Researcher Award.

Professional Development  📚🔬✨

Cheng Yangyang is dedicated to advancing the field of piezoelectric ceramics and high-precision actuators. 💡 His research leverages first-principles methods to investigate stress-induced property changes in PbTiO3, contributing to the development of next-generation piezoelectric devices. 🔬 With five research papers 📄 and five patents, he has made significant strides in mechanical engineering and materials science. 🏆 His involvement in national and key laboratory-funded projects provides a platform for real-world applications of his findings. 💼 Through additive manufacturing and computational modeling, he continues to push the boundaries of ceramic materials research for industrial and technological advancements. ⚙️

Research Focus  🔬🌱🌍

Cheng Yangyang’s research primarily revolves around piezoelectric ceramics, additive manufacturing, and first-principles computational methods. 🏗️ His studies focus on the performance, structure, and electronic properties of PbTiO3, a widely used ferroelectric ceramic, under different stress conditions. 🔬 By employing density functional theory, he explores how uniaxial stress modulates the material’s physical properties, aiming to enhance its application in electronic communication and piezoelectric actuation systems. 📡 His work contributes to the development of high-performance, stable piezoelectric devices for modern engineering applications, including precision actuators and smart materials in mechanical and electrical engineering. ⚡

Publication Top Notes

Gan Li | Manufacturing Technology | Best Researcher Award

Gan Li | Manufacturing Technology | Best Researcher Award

Dr. Gan Li, College of Mechanical and Electronic Engineering, China University of Petroleum, China.

Publication profile

Scopus
Orcid
Googlescholar

Education and Experience

  • 🎓 Ph.D. in Mechanical Engineering (2018–2024)
    Dalian University of Technology, GPA 3.83/4.0
  • 🎓 B.S. in Mechanical Engineering & Engineering Management (2014–2018)
    China University of Petroleum, Ranked Top 4% (7/196)
  • 💼 Assistant Professor
    College of Mechanical and Electronic Engineering, China University of Petroleum
  • 🔬 Key Researcher
    National Engineering Research Center of Marine Geophysical Prospecting

Suitability For The Award

Dr. Gan Li, an Assistant Professor at the College of Mechanical and Electronic Engineering, China University of Petroleum, PR China, and a key member of the National Engineering Research Center of Marine Geophysical Prospecting and Exploration and Development Equipment, is an exceptional candidate for the Best Researcher Award. With a strong foundation in advanced manufacturing technologies and ultra-precision machining, Dr. Li’s innovative research has redefined the frontiers of mechanical engineering, making significant contributions to precision manufacturing, signal analysis, and process simulation.

Professional Development 

  • 🏆 Outstanding Senior Thesis (12/89), Jiangsu, China (2023)
  • 🏅 Third Prize, Future Flying Machine Innovation Competition, Dalian, China (2019)
  • 🎖️ Recognition at the 22nd Chinese Conference of Abrasive Technology

Publications Top Notes

  • Undeformed chip thickness models for precise vertical-spindle face grinding of tungsten heavy alloy
    📖 Precision Engineering, 2024, Cited by: 3
  • Wheel wear of tungsten heavy alloy precision grinding and its influence mechanism on surface quality
    📖 Journal of Hunan University Natural Sciences, 2024
  • Research on grinding wheel wear measurement methods: Current status and future perspectives
    📖 Scientia Sinica Technologica, 2024
  • A grinding force model and surface formation mechanism of cup wheels considering crystallographic orientation
    📖 Journal of Materials Processing Technology, 2023, Cited by: 9
  • An online monitoring methodology for grinding state identification based on real-time signal of CNC grinding machine
    📖 Mechanical Systems and Signal Processing, 2023, Cited by: 12
  • Cutting chatter in ultrasonic elliptical vibration cutting and its influence on surface roughness and tool wear
    📖 Metals, 2023, Cited by: 6

Marin Mihai | Processing and Manufacturing | Best Researcher Award

Marin Mihai | Processing and Manufacturing | Best Researcher Award

Marin Mihai at INCDIE ICPE-CA , Romania

Marin Mihai is a highly skilled metallurgical engineer with over 8 years of experience in cross-cultural national research projects, specializing in metallurgical and energy profiles. He holds a Bachelor’s degree in Material Science Engineering (2007-2011) and a Master’s degree in Management and Engineering of Metallic Materials Production (2011-2013), both from the Politehnica University of Bucharest. Additionally, he completed a scholarship at the Politehnica University of Patras, Greece, focusing on the production of geopolymers from industrial by-products.

Profile :

ORCID

Google Scholar

Education:

Marin Mihai completed his high school education at National College Spiru Haret in Ploiesti (2003-2007). He then pursued Bachelor Studies in the Faculty of Science and Materials Engineering at Politehnica University of Bucharest (2007-2011), followed by a Master Degree in Management and Engineering of Metallic Materials Production at the same institution (2011-2013). He was awarded a master scholarship at Politehnica University of Patras, Greece, where he conducted research on geopolymers from Red Mud and Rice Husk Ash under Prof. George N. Angelopoulos (February 2013 – August 2013).

Professional Journey:

Marin Mihai began his professional career as a Market Analyst at SC ASHBROOKE EXPERT SRL (July 2011 – January 2014). He then worked as a Metallurgical Engineering Technologist at SC ELECTROMAGNETICA SA (February 2014 – August 2015). Since 2015, he has been a Scientific Researcher at the National Institute for Research and Development in Electrical Engineering ICPE-CA, where he is responsible for various tasks including the development and quality assurance of electrical contacts and participation in project dissemination activities.

Honors & Awards:

Marin Mihai has been recognized for his contributions to the field with various patents, such as those on tungsten-copper-graphene oxide electrical contacts and tungsten-copper-nickel composite materials.

 

Publication Top Note

    1. Tungsten-Copper Composites for Arcing Contact Applications in High Voltage Circuit Breakers
      • Authors: MV Lungu, D Patroi, V Marinescu, S Mitrea, I Ion, M Marin, P Godeanu
      • Journal: Material Science Research India
      • Volume: 17, Issue 3
      • Pages: 8
      • Year: 2020
    2. Enhanced Metallic Targets Prepared by Spark Plasma Sintering for Sputtering Deposition of Protective Coatings
      • Authors: MV Lungu, E Enescu, D Tălpeanu, D Pătroi, V Marinescu, A Sobetkii, M Marin
      • Journal: Materials Research Express
      • Volume: 6, Issue 7
      • Article Number: 076565
      • Year: 2019
    3. Preparation and Study of the Optical, Electrical, and Dielectric Characteristics of Some Disc-Shaped Tin Dioxide-Based Varistors
      • Authors: MV Lungu, D Pătroi, V Marinescu, A Caramitu, M Marin, D Tălpeanu
      • Journal: Romanian Journal of Physics
      • Volume: 67
      • Article Number: 610
      • Year: 2022
    4. Recycled Polypropylene/Strontium Ferrite Polymer Composite Materials with Electromagnetic Shielding Properties
      • Authors: AR Caramitu, MV Lungu, RC Ciobanu, I Ion, M Marin, V Marinescu
      • Journal: Polymers
      • Volume: 16, Issue 8
      • Article Number: 1129
      • Year: 2024
    5. Tribological Behavior of Arcing Contact Materials Based on Copper Infiltrated Tungsten Composites
      • Authors: MV Lungu, E Enescu, M Lucaci, CD Cîrstea, F Grigore, S Mitrea, D Pătroi
      • Conference Proceedings: 9th International Conference “BALTTRIB 2018”
      • Volume: 1
      • Pages: 27-33
      • Year: 2017

    Strengths

    1. Innovative Research on Electrical Contacts:
      • Marin Mihai’s work on tungsten-copper composites for arcing contact applications in high voltage circuit breakers is pioneering. This research is crucial for enhancing the performance and reliability of high voltage circuit breakers, making it a significant contribution to the field of electrical engineering.
    2. Development of Advanced Materials:
      • His research on enhanced metallic targets prepared by spark plasma sintering for sputtering deposition of protective coatings showcases his ability to develop advanced materials with superior properties. This work has implications for improving the durability and efficiency of protective coatings in various industrial applications.
    3. Multidisciplinary Approach:
      • Mihai’s work spans across different areas of material science, including optical, electrical, and dielectric characteristics of tin dioxide-based varistors, and electromagnetic shielding properties of recycled polypropylene/strontium ferrite polymer composite materials. This multidisciplinary approach highlights his versatility and comprehensive understanding of material science.
    4. Contribution to Sustainable Materials:
      • His research on the preparation of geopolymers from industrial by-products such as Red Mud and Rice Husk Ash demonstrates his commitment to sustainability. This work not only provides solutions for waste management but also contributes to the development of eco-friendly materials.
    5. Recognized Expertise and Patents:
      • Mihai’s contributions to the field have been recognized through various patents, including those on tungsten-copper-graphene oxide electrical contacts and tungsten-copper-nickel composite materials. These patents signify his role as a leading innovator and researcher in material science.

    Areas for Improvement

    1. Expanded Collaboration:
      • Increasing collaboration with international researchers and institutions can further enhance the scope and impact of his research. This would provide broader perspectives and potentially lead to more groundbreaking discoveries.
    2. Publication in High-Impact Journals:
      • While Mihai has published in reputable journals, focusing on publishing in higher impact journals could increase the visibility and citation of his work. This would further establish his reputation in the global research community.
    3. Grant Acquisition:
      • Actively seeking and securing more research grants can provide additional resources for his projects. This can enable more extensive research and the ability to explore new areas within material science.
    4. Integration of Emerging Technologies:
      • Incorporating emerging technologies such as artificial intelligence and machine learning in his research methodologies could lead to new insights and more efficient research processes. This could also open new avenues for innovation in material science.
    5. Enhanced Communication Skills:
      • Improving public speaking and presentation skills can aid in effectively disseminating his research findings to a wider audience. This would also be beneficial for securing funding and collaborative opportunities.

    Conclusion

    Marin Mihai is a highly skilled and innovative metallurgical engineer with a robust portfolio of research that has made significant contributions to material science, particularly in the development of advanced materials and sustainable solutions. His strengths in multidisciplinary research, innovation, and recognized expertise have earned him the Best Researcher Award. However, by expanding his collaborations, aiming for high-impact publications, securing more grants, integrating emerging technologies, and enhancing his communication skills, he can further elevate his research impact and continue to be a leader in his field.