Dong-Ik Kim | Materials | Best Researcher Award

Dong-Ik Kim | Materials | Best Researcher Award

Dr. Dong-Ik Kim, Korea Institute of Science and Technology, South Korea.

Nahid Nishat | Materials Chemistry | Best Researcher Award

Nahid Nishat | Materials Chemistry | Best Researcher Award

Dr. Nahid Nishat, Jamia Millia Islamia , India.

Pinkie Ntola | Materials Chemistry | Excellence in Research Award

Pinkie Ntola | Materials Chemistry | Excellence in Research Award

Dr. Pinkie Ntola, Durban University of Technology, South Africa.

Ajeet Chandra | Material Synthesis | Best Researcher Award

Ajeet Chandra | Material Synthesis | Best Researcher Award

Dr. Ajeet Chandra, Kyung Hee University, Seoul, South Korea.

Subhrangsu Sarkar | Metal Nanoparticles | Best Research Article Award

Subhrangsu Sarkar | Metal Nanoparticles | Best Research Article Award

Dr. Subhrangsu Sarkar , University of Fribourg , Switzerland.

Dr. Subhrangsu Sarkar 🎓 is a dedicated physicist and post-doctoral fellow at the University of Fribourg, Switzerland 🇨🇭, working under Prof. Christian Bernhard. With a deep passion for nanoscience and quantum physics, his academic journey spans prestigious institutes like TIFR Mumbai and IIT Delhi 🇮🇳. His research investigates the intricate effects of finite sizes in metal nanoparticles, blending quantum, surface, and lattice deformation phenomena 🔬. An awardee of the Swiss Government Excellence Scholarship 🏅, he brings international insight and innovative thinking to condensed matter physics. His pursuits reflect a balance of theoretical understanding and experimental precision ⚛️.

Publication Profile

Scopus
Orcid
Google Scopus

🎓 Education and Experience 

  • 📍 Postdoctoral Researcher, University of Fribourg, Switzerland (Jul 2018 – Present)

  • 📍 Postdoctoral Researcher, Department of Physics, IISc Bengaluru, India (Feb 2018 – Jun 2018)

  • 🎓 Ph.D. in Physics, TIFR, Mumbai, India (Aug 2010 – Dec 2017)
    (Thesis: Finite size effect in metal nanoparticles)

  • 🎓 M.Sc. in Physics, IIT Delhi (Aug 2008 – Jul 2010) – CGPA: 7.933

  • 🎓 B.Sc. (Hons.) in Physics, (Aug 2005 – Jul 2008)

Suitabilty Summary

Dr. Subhrangsu Sarkar, currently a Post-Doctoral Fellow at the University of Fribourg, Switzerland, is a distinguished physicist whose research exemplifies scientific excellence and innovation. His recent publication titled “Composite antiferromagnetic and orbital order with altermagnetic properties at a cuprate/manganite interface” (PNAS Nexus, 2024) is a strong contender for the Best Research Article Award. This pioneering work unravels a novel interplay of composite magnetic and orbital orders, revealing altermagnetic properties at a complex oxide interface—an area at the forefront of condensed matter physics.

Professional Development 

Dr. Sarkar’s professional journey is marked by rigorous training and global exposure 🌍. Selected through highly competitive entrance exams like TIFR and JEST, he built a strong foundation in theoretical and experimental physics 🧪. His postdoctoral stints at IISc Bengaluru 🇮🇳 and the University of Fribourg 🇨🇭 have advanced his expertise in condensed matter and nanoscale physics. Collaborating with top researchers and publishing impactful findings, he continues to push the boundaries of material science 🔍. His participation in global scientific communities and commitment to interdisciplinary innovation shape his evolution as a skilled and forward-thinking researcher 🧠✨.

Research Focus 

Dr. Sarkar’s research is focused on condensed matter physics, particularly exploring finite size effects in metal nanoparticles 🔬. His work delves into the complex interaction of quantum size, surface energy, and lattice deformation at the nanoscale ⚛️. Through a combination of experimental methods and theoretical analysis, he aims to understand how these effects influence the electronic, magnetic, and structural properties of nanomaterials 🌡️. His current work at the University of Fribourg involves optical spectroscopy and superconductivity studies, contributing to the development of next-generation quantum materials and devices 💡🔧. His research sits at the intersection of physics and nanotechnology 🧿.

Awards and Honors 

  • 🇨🇭 Swiss Government Excellence Scholarship for Post-Doctoral Research (2018) 🏆

  • 🎓 TIFR Research Fellowship – Selected via national test and interview (Top 50 of 5000) 🧠

  • 🧪 National Eligibility Test (NET) in Physics, CSIR, Govt. of India (2010) ✅

  • 📈 Joint Entrance Screening Test (JEST) in Physics – 97.8 percentile, Top 100 (2010) 📊

  • 🎯 Joint Admission Test (IIT-JAM) for M.Sc. in Physics – All India Rank 146 (2010) 📘

  • 📄 Composite antiferromagnetic and orbital order with altermagnetic properties at a cuprate/manganite interfacePNAS Nexus, 2024
    🔗 DOI: 10.1093/pnasnexus/pgae100 📅 2024 🧲🧠

Publication Top Notes

  • ☀️ Nanocrystalline Flash Annealed Nickel Oxide for Large Area Perovskite Solar CellsAdvanced Science, 2023
    🔗 DOI: 10.1002/advs.202302549 📅 2023 ⚡🔋

  • 🧪 Long-ranged Cu-based order with dz2d_{z^2} orbital character at a YBa₂Cu₃O₇/manganite interfacenpj Quantum Materials, 2021
    🔗 DOI: 10.1038/s41535-021-00311-y 📅 2021 🧲🔬

  • 🌀 Magnetic field dependence of the copper charge density wave order in a YBa₂Cu₃O₇/Nd₀.₆₅(Ca₀.₇Sr₀.₃)₀.₃₅MnO₃ superlatticePhysical Review B, 2021
    🔗 DOI: 10.1103/PhysRevB.104.174513 📅 2021 📡📈

  • 🔍 Infrared study of the interplay of charge, spin, and lattice excitations in the magnetic topological insulator EuIn₂As₂Physical Review B, 2021
    🔗 DOI: 10.1103/physrevb.103.245101 📅 2021 🌌🎶

  • 🔬 Dependence of fast electron characteristics on the thickness of the nanocrystalline film target in intense, ultrashort laser–solid interactionApplied Physics B, 2020
    🔗 DOI: 10.1007/s00340-020-07499-0 📅 2020 💥🧿

Abu Zaed | Nanomaterials | Best Researcher Award

Abu Zaed | Nanomaterials | Best Researcher Award

Mr. Abu Zaed, Sunway University, Malaysia.

MD Abu Zaed is a dedicated researcher at the Research Center for Nanomaterials and Energy Technology (RCNMET), School of Engineering and Technology (SET), Sunway University. 📡🔬 With a strong background in sustainability science, chemistry, and environmental engineering, he has made significant contributions to the fields of clean water production, nanomaterials, and sustainable desalination. 🌱💧 As a prolific author, he has published multiple high-impact papers and holds patents in MXene-based materials. Beyond research, he serves as the President of the Postgraduate Students’ Council (PGSC) and leads sustainability initiatives at Sunway University, promoting student welfare and environmental responsibility. 🌍🎯

Publication Profile

Orcid
Scopus
Google Scholar

Education & Experience 🎓🔬

Education 🎓

  • PhD in Sustainability Science and Technology (Sunway University, Malaysia) – Final Viva Pending

  • MSc in Chemistry (Jahangirnagar University, Bangladesh) – 2019

  • MSc in Environmental Science (Jahangirnagar University, Bangladesh) – 2018

  • BSc in Electrical and Electronics Engineering (Northern University, Bangladesh) – 2017

  • Diploma in Environmental Engineering and Technology (Pabna Polytechnic Institute, Bangladesh) – 2013

  • SSC in Science (St. Joseph’s High School, Bangladesh) – 2008

Professional Experience 🏭🔬

  • Asst. Manager, Sustainability – Beximco Industrial Park, Bangladesh (2020-2022)

  • Asst. Manager, ETP & EMS – Knit Plus Ltd, Bangladesh (2016-2019)

  • Senior Executive (ECR) – Group Redisha, Bangladesh (2015-2016)

  • In-Charge, ETP & WTP – Knit Plus Ltd, Bangladesh (2013-2015)

Summary Suitabilty

Dr. MD Abu Zaed (Ph.D. – Awaiting Final Viva) is a highly deserving candidate for the Best Researcher Award, given his outstanding contributions to nanomaterials, sustainability science, and clean water technologies. As a researcher at the Research Center for Nanomaterials and Energy Technology (RCNMET), School of Engineering and Technology (SET), Sunway University, he has made significant advancements in sustainable materials for energy and environmental applications. His high-impact publications, patent innovations, interdisciplinary expertise, and academic leadership make him an ideal recipient of this prestigious award.

Professional Development 📈🔬

MD Abu Zaed has demonstrated expertise in environmental sustainability and safety through various professional certifications. 🏆✅ He is a ZDHC Certified professional, trained in Zero Discharge of Hazardous Chemicals and ISO 45001:2018 Occupational Health & Safety Management. ⚠️🔬 Additionally, he holds lead auditor certifications for ISO 14001:2015 Environmental Management System and has received training in chemical management, disaster management, fire safety, and solid waste management. 🚨♻️ His continuous professional growth reflects his commitment to sustainable industrial practices and environmental responsibility, contributing to research-driven solutions for clean water and green energy technologies. 🌱💡

Research Focus 🔋⚡

MD Abu Zaed’s research primarily focuses on nanomaterials, clean water production, and sustainable energy solutions. 💧🔬 His work involves synthesizing MXene-based composites for advanced desalination processes and solar-driven interfacial steam generation. 🌞♻️ He explores low-cost MXene synthesis, sustainable materials, and environmental applications for wastewater treatment and energy storage systems. ⚡🔄 His publications in high-impact journals underscore his expertise in 2D materials, photothermal absorbers, and eco-friendly desalination techniques. 🌿🔎 By integrating recycled materials and green chemistry, he aims to develop cost-effective and scalable solutions for global water and energy challenges. 🌏💚

Awards & Honors 🏆🎖️

  • President – Postgraduate Students’ Council (PGSC), Sunway University (2024-2025) 👨‍🎓🎤

  • President – Sunway 3Zero Club, Sunway University (2024-2025) 🌿🌍

  • Director for Student Welfare & Inclusivity – PGSC, Sunway University (2023-2024) 🤝📢

  • Patent Holder – Malaysia Patent Applications on MXene/Graphite Composites for Sustainable Desalination 🏆🔬

  • Lead & Corresponding Author – Multiple high-impact journal publications (Q1 & Q2) 📖🧑‍🔬

Publication Top Notes

📊 Cost analysis of MXene for low-cost production, and pinpointing of its economic footprintOpen Ceramics 17, 100526Cited by: 342024
🌞 Low-cost synthesis of Ti₃C₂Tₓ MXene-based sponge for solar steam generation and clean water productionCeramics International 50 (16), 27910-27922Cited by: 212024
🌊 The future of solar-driven interfacial steam generation for sustainable water desalination: drivers, challenges, and opportunities – ReviewResults in Engineering, 102649Cited by: 162024
⚙️ Strategic insights for bulk production of MXene: a reviewE3S Web of Conferences 488, 01003Cited by: 162024
🔄 Utilization of recycled materials for low-cost MXene synthesis and fabrication of graphite/MXene composite for enhanced water desalination performanceSeparation and Purification Technology 354, 129055Cited by: 112025
🧪 Invited viewpoint: pathways to low-cost MXene synthesisJournal of Materials Science 59 (18), 7575-7594Cited by: 102024
☀️ Electrical and thermal performance assessment of photovoltaic thermal system integrated with organic phase change material1st International Conference on Advanced Materials & Sustainable EnergyCited by: 10* – 2024
💧 Synthesis and characterization of hierarchical Ti₃C₂Tₓ MXene/graphitic-carbon nitride/activated carbon@luffa sponge composite for enhanced water desalinationOpen Ceramics 19, 100645Cited by: 92024

Yangyang Cheng | Additive Manufacturing | Best Researcher Award

Yangyang Cheng | Additive Manufacturing | Best Researcher Award

Dr. Yangyang Cheng, Yanshan University, China.

Yangyang Cheng is a doctoral candidate at the School of Mechanical Engineering, Yanshan University, specializing in piezoelectric ceramic materials. 🔬 His research focuses on performance analysis and preparation of piezoelectric ceramics, utilizing first-principles methods to explore their structural and electronic properties. 🏗️ He has published five academic papers 📄 and secured five invention patents. 🏅 Additionally, Cheng has contributed to major projects, including those funded by the National Natural Science Foundation of China and the State Key Laboratory of New Ceramic Materials. His work advances high-performance and stable piezoelectric devices for applications in electronic communication and piezoelectric driving. ⚙️

Publication Profile

Scopus

Education & Experience 🎓🔬

  • Doctoral Candidate (Ph.D.) in Mechanical Engineering, Yanshan University (Five-year combined Master’s and Ph.D. program) 🏫

  • Specializes in piezoelectric ceramics, additive manufacturing, and first-principles analysis 🔬

  • Published five academic papers in SCI and EI journals 📑

  • Secured five invention patents in mechanical design and materials science 🔖

  • Participated in two national research projects, including NSFC-funded studies and key laboratory initiatives 🔬

  • Engaged in research on high-precision microactuators using dual-flexible hinge stacked piezoelectric structures ⚙️

Summary Suitability

Dr. Yangyang Cheng , a doctoral candidate in Mechanical Engineering at Yanshan University, has demonstrated exceptional research capabilities in piezoelectric ceramics, additive manufacturing, and first-principles calculations. With an impressive portfolio of five published academic papers, five invention patents, and participation in multiple national research projects, he has made significant contributions to the field of advanced materials and precision engineering. His research has provided crucial insights into the mechanical and electronic properties of piezoelectric ceramics, making him a deserving recipient of the Best Researcher Award.

Professional Development  📚🔬✨

Cheng Yangyang is dedicated to advancing the field of piezoelectric ceramics and high-precision actuators. 💡 His research leverages first-principles methods to investigate stress-induced property changes in PbTiO3, contributing to the development of next-generation piezoelectric devices. 🔬 With five research papers 📄 and five patents, he has made significant strides in mechanical engineering and materials science. 🏆 His involvement in national and key laboratory-funded projects provides a platform for real-world applications of his findings. 💼 Through additive manufacturing and computational modeling, he continues to push the boundaries of ceramic materials research for industrial and technological advancements. ⚙️

Research Focus  🔬🌱🌍

Cheng Yangyang’s research primarily revolves around piezoelectric ceramics, additive manufacturing, and first-principles computational methods. 🏗️ His studies focus on the performance, structure, and electronic properties of PbTiO3, a widely used ferroelectric ceramic, under different stress conditions. 🔬 By employing density functional theory, he explores how uniaxial stress modulates the material’s physical properties, aiming to enhance its application in electronic communication and piezoelectric actuation systems. 📡 His work contributes to the development of high-performance, stable piezoelectric devices for modern engineering applications, including precision actuators and smart materials in mechanical and electrical engineering. ⚡

Publication Top Notes

Shaghayegh Shabani | Ceramic Materials | Women Researcher Award

Shaghayegh Shabani | Ceramic Materials | Women Researcher Award

Dr. Mingde Tong, Northwestern Polytechnical University, China.

Mingde Tong | Ceramic Composites | Best Researcher Award

Mingde Tong | Ceramic Composites | Best Researcher Award

Dr. Mingde Tong, Northwestern Polytechnical University, China.

Dr. Kai Xiong | Material | Best Researcher Award

Dr. Kai Xiong | Material | Best Researcher Award

Dr. Kai Xiong , Yunnan University , China.

Dr. Kai Xiong, Ph.D., is a Professor at Yunnan University and a Master Supervisor. A high-level introduced young talent in Yunnan Province and a core faculty member at Donglu, he specializes in multi-scale simulation and the design of rare and high-entropy materials. He has led major research projects, including one National Natural Science Foundation of China (NSFC) project and multiple provincial programs. With over 100 published papers, five software copyrights, and a textbook, he has significantly contributed to material science. His work bridges fundamental research with industrial applications, enhancing innovation in non-ferrous metal materials. 🔬📖

Publication Profile

Scopus
Orcid

Education & Experience 🎓🔬

  • Ph.D. in Materials Science, specialized in multi-scale simulation and material design 🏗️
  • Professor, Yunnan University, mentoring master’s students and conducting advanced research 📚
  • High-level Young Talent, recognized by Yunnan Province for academic excellence 🏅
  • Young & Middle-Aged Backbone Teacher, contributing to scientific advancement at Yunnan University 👨‍🏫
  • Principal Investigator, leading multiple national and provincial research projects 🔬
  • Industry Collaborations, working on enterprise-sponsored research for material innovation ⚙️

Suitability Summmary

Dr. Kai Xiong, a distinguished Professor at Yunnan University, is an ideal candidate for the Best Researcher Award due to his exceptional contributions to material science and engineering. As a high-level introduced young talent in Yunnan Province and a key faculty member at Yunnan University, he has significantly advanced the field of multi-scale simulation and the design of rare and precious non-ferrous metals and high-entropy materials. His research has had a profound impact on the development of next-generation materials, contributing both theoretically and practically to the field.

Professional Development 🚀

Dr. Kai Xiong has made remarkable strides in computational materials science, focusing on multi-scale simulation and the development of advanced non-ferrous and high-entropy materials. His expertise spans theoretical modeling and experimental validation, enabling breakthrough discoveries in material performance enhancement. He actively mentors students, contributes to industrial applications, and collaborates on national and provincial projects. His research has yielded patented innovations, software tools, and a specialized textbook. Through continuous learning and interdisciplinary collaboration, he pushes the boundaries of material science, bridging academia and industry to drive technological advancements in rare and precious metals. 🔍🔧📘

Research Focus 🔬💡

Dr. Kai Xiong specializes in the multi-scale simulation and design of rare and precious non-ferrous metals and high-entropy materials. His work integrates computational modeling, experimental validation, and industrial applications to enhance material properties. Key areas include atomic-level material behavior analysis, nanostructured alloy development, and mechanical and thermal stability optimization. His research plays a vital role in advanced manufacturing, aerospace, and electronic applications, improving material efficiency and sustainability. With a strong foundation in applied physics, chemistry, and engineering, he contributes to cutting-edge advancements that redefine the future of materials science. 🏗️⚡🔍

Awards & Honors 🏆🎖️

  • High-Level Young Talent, Yunnan Province 🏅
  • Young & Middle-Aged Backbone Teacher, Yunnan University 🎓
  • Principal Investigator of NSFC Project 🔬
  • Leader of Yunnan Province Major Science & Technology Programs 🚀
  • Published 100+ Research Papers in Prestigious Journals 📖
  • Author of a Specialized Material Science Textbook 📚
  • Holder of 5 Software Copyrights for Scientific Innovations 💻

Publication Top Notes

  • Machine learning inverse design of high-strength mid-temperature Ag-based solders

    • Journal: Materials & Design
    • Publication Date: April 2025
    • DOI: 10.1016/j.matdes.2025.113736
    • Contributors: Chengchen Jin, Kai Xiong, Yingwu Wang, Shunmeng Zhang, Yunyang Ye, Hui Fang, Aimin Zhang, Hua Dai, Yong Mao
  • Phase size induced anomalous plastic behavior in AuSn-Au₅Sn duplex alloy

    • Journal: Materials Science and Engineering: A
    • Publication Date: March 2025
    • DOI: 10.1016/j.msea.2025.147911
    • Contributors: Rui Ma, Yingjie Sun, Hualong Ge, Wenyan Zhou, Haijun Wu, Lihua Ma, Shaoping Lu, Shunmeng Zhang, Zhiwei Xia, Kai Xiong, et al.
  • High‐throughput calculation integrated with stacking ensemble machine learning for predicting elastic properties of refractory multi‐principal element alloys

    • Journal: Materials Genome Engineering Advances
    • Publication Date: March 12, 2025
    • DOI: 10.1002/mgea.70004
    • Contributors: Chengchen Jin, Kai Xiong, Congtao Luo, Hui Fang, Chaoguang Pu, Hua Dai, Aimin Zhang, Shunmeng Zhang, Yingwu Wang
  • Strength-ductility trade-off in NbTaTiV refractory multi-principal element alloys

    • Journal: Materials Science and Engineering: A
    • Publication Date: February 2025
    • DOI: 10.1016/j.msea.2024.147677
    • Contributors: Yingwu Wang, Kai Xiong, Lingjie Yang, Shunmeng Zhang, Hui Fang, Hua Dai, Chengchen Jin, Yunyang Ye, Congtao Luo, Junjie He, et al.
  • Hf-induced strengthening and lattice distortion in HfNbTaTiV refractory multi-principal element alloys

    • Journal: Journal of Materials Research and Technology
    • Publication Date: January 2025
    • DOI: 10.1016/j.jmrt.2024.12.256
    • Contributors: Yingwu Wang, Kai Xiong, Wei Li, Chengchen Jin, Haijun Wu, Hua Dai, Zihang Yang, Hongmo Yang, Shunmeng Zhang