Fa-Feng Xu | Materials Science | Best Researcher Award

Fa-Feng Xu | Materials Science | Best Researcher Award

Assistant Researcher at Qinghai Institute of Saltlakes Chinese Academy of Sciences, China.

Dr. Fa-Feng Xu is an Assistant Research Fellow at the Key Laboratory of Green and High-End Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences. He earned his Ph.D. in Physical Chemistry from the Institute of Chemistry, CAS, where he also conducted postdoctoral research in Material Engineering. With a multidisciplinary background in chemistry, materials science, and photophysics, his work explores organic microlasers, photonic materials, and optical applications. Dr. Xu’s innovative contributions in functional organic systems for high-performance photonic devices reflect a strong foundation in synthesis, device fabrication, and interdisciplinary research.

Professional Profile

Orcid

Education and Experience:

  • 2010.09–2014.07 – B.Sc. in Material Chemistry, Jilin University
    Supervisor: Prof. Yuguang Ma (Academician, CAS)

  • 2014.09–2020.07 – Ph.D. in Physical Chemistry, Institute of Chemistry, CAS
    Supervisors: Prof. Jiannian Yao & Prof. Yong Sheng Zhao

  • 2020.07–2023.11 – Postdoctoral Fellow in Material Engineering, Institute of Chemistry, CAS
    Supervisor: Prof. Yu-Wu Zhong

  • 2023.11–Present – Assistant Research Fellow, Qinghai Institute of Salt Lakes, CAS

Suitability Summary for the Best Researcher Award

Dr. Fa-Feng Xu stands out as a highly qualified candidate for the Best Researcher Award based on a robust academic background, interdisciplinary research strengths, and significant contributions to cutting-edge fields such as organic microlasers, photochemistry, and material engineering. His training across prestigious institutions, including the Institute of Chemistry, Chinese Academy of Sciences, and Jilin University, under the supervision of eminent scientists (e.g., Academician Prof. Jiannian Yao), reflects strong mentorship and high-level exposure.

Professional Development

Dr. Xu has cultivated a robust interdisciplinary foundation, seamlessly integrating physical chemistry, materials science, and optical physics into his research. He specializes in designing and synthesizing organometallic and polymeric materials for advanced photonic functionalities. Dr. Xu’s professional development is driven by hands-on experience in organic molecule synthesis, micro/nanostructure preparation, and device fabrication, enabling him to create high-performance organic microlaser arrays and waveguides. He is proficient with cutting-edge instrumentation and experimental methods, allowing detailed structural characterization and optical analysis. His research contributes to pioneering applications in display technologies, information security, and nonlinear optical devices.

Research Focus

🔬 Dr. Fa-Feng Xu’s research lies at the intersection of organic photonics, functional materials, and optical device engineering. His primary focus is on the design, synthesis, and application of organic and organometallic materials for light-emitting applications like microlasers and waveguides. He explores multidisciplinary solutions for problems in photophysics, nonlinear optics, and information encryption, contributing to advancements in next-generation displays and secure communication systems. His work spans organic materials, liquid crystals, nanostructures, and polymer microdevices, with an emphasis on device fabrication and performance evaluation under optical stimuli.

Awards and Recognition

Dr. Fa-Feng Xu has been recognized for his academic excellence and research contributions through numerous awards and honors. He received the Excellent Paper Certificate from the 8th China Association for Science and Technology Excellent Scientific Paper Selection Program, highlighting the significance of his research output. During his academic journey, he was consistently acknowledged for outstanding performance, receiving the Merit Student Award (2014–2015) and being named a School Outstanding Student Leader (2015–2016) at the University of Chinese Academy of Sciences. He was also a recipient of Academic Scholarships from 2014 to 2019 at UCAS. Earlier in his education, he earned National Encouragement Scholarships (2010–2011, 2011–2012) and was awarded the Excellence Scholarship at Jilin University for the academic year 2010–2011.

Top Noted Publications

  • Recent Advances in Liquid Crystal Polymer-Based Circularly Polarized Luminescent Materials, 2025, Polymers

  • Stacking Interactions and Photovoltaic Performance of Cs₂AgBiBr₆ Perovskite, 2023, Solar RRL

  • Molecular Cocrystals with Hydrogen-Bonded Polymeric Structures and Polarized Luminescence, 2022, Materials

  • Selective, Anisotropic, or Consistent Polarized‐Photon Out‐Coupling of 2D Organic Microcrystals, 2022, Angewandte Chemie International Edition

  • Organoplatinum(II) Cruciform: A Versatile Building Block to Fabricate 2D Microcrystals with Full‐Color and White Phosphorescence and Anisotropic Photon Transport, 2022, Angewandte Chemie International Edition

  • Full-color Flexible Laser Displays Based on Random Laser Arrays, 2021, Science China Materials

  • 3D Laser Displays Based on Circularly Polarized Lasing from Cholesteric Liquid Crystal Arrays, 2021, Advanced Materials

  • Room Temperature Exciton–Polariton Bose–Einstein Condensation in Organic Single-Crystal Microribbon Cavities, 2021, Nature Communications

Haolei Mou | Materials Science | Best Researcher Award

Haolei Mou | Materials Science | Best Researcher Award

Dr. Haolei Mou, Civil Aviation University, China.

Dong-Ik Kim | Materials | Best Researcher Award

Dong-Ik Kim | Materials | Best Researcher Award

Dr. Dong-Ik Kim, Korea Institute of Science and Technology, South Korea.

Nahid Nishat | Materials Chemistry | Best Researcher Award

Nahid Nishat | Materials Chemistry | Best Researcher Award

Dr. Nahid Nishat, Jamia Millia Islamia , India.

Ajeet Chandra | Material Synthesis | Best Researcher Award

Ajeet Chandra | Material Synthesis | Best Researcher Award

Dr. Ajeet Chandra, Kyung Hee University, Seoul, South Korea.

Dr. Kai Xiong | Material | Best Researcher Award

Dr. Kai Xiong | Material | Best Researcher Award

Dr. Kai Xiong , Yunnan University , China.

Dr. Kai Xiong, Ph.D., is a Professor at Yunnan University and a Master Supervisor. A high-level introduced young talent in Yunnan Province and a core faculty member at Donglu, he specializes in multi-scale simulation and the design of rare and high-entropy materials. He has led major research projects, including one National Natural Science Foundation of China (NSFC) project and multiple provincial programs. With over 100 published papers, five software copyrights, and a textbook, he has significantly contributed to material science. His work bridges fundamental research with industrial applications, enhancing innovation in non-ferrous metal materials. 🔬📖

Publication Profile

Scopus
Orcid

Education & Experience 🎓🔬

  • Ph.D. in Materials Science, specialized in multi-scale simulation and material design 🏗️
  • Professor, Yunnan University, mentoring master’s students and conducting advanced research 📚
  • High-level Young Talent, recognized by Yunnan Province for academic excellence 🏅
  • Young & Middle-Aged Backbone Teacher, contributing to scientific advancement at Yunnan University 👨‍🏫
  • Principal Investigator, leading multiple national and provincial research projects 🔬
  • Industry Collaborations, working on enterprise-sponsored research for material innovation ⚙️

Suitability Summmary

Dr. Kai Xiong, a distinguished Professor at Yunnan University, is an ideal candidate for the Best Researcher Award due to his exceptional contributions to material science and engineering. As a high-level introduced young talent in Yunnan Province and a key faculty member at Yunnan University, he has significantly advanced the field of multi-scale simulation and the design of rare and precious non-ferrous metals and high-entropy materials. His research has had a profound impact on the development of next-generation materials, contributing both theoretically and practically to the field.

Professional Development 🚀

Dr. Kai Xiong has made remarkable strides in computational materials science, focusing on multi-scale simulation and the development of advanced non-ferrous and high-entropy materials. His expertise spans theoretical modeling and experimental validation, enabling breakthrough discoveries in material performance enhancement. He actively mentors students, contributes to industrial applications, and collaborates on national and provincial projects. His research has yielded patented innovations, software tools, and a specialized textbook. Through continuous learning and interdisciplinary collaboration, he pushes the boundaries of material science, bridging academia and industry to drive technological advancements in rare and precious metals. 🔍🔧📘

Research Focus 🔬💡

Dr. Kai Xiong specializes in the multi-scale simulation and design of rare and precious non-ferrous metals and high-entropy materials. His work integrates computational modeling, experimental validation, and industrial applications to enhance material properties. Key areas include atomic-level material behavior analysis, nanostructured alloy development, and mechanical and thermal stability optimization. His research plays a vital role in advanced manufacturing, aerospace, and electronic applications, improving material efficiency and sustainability. With a strong foundation in applied physics, chemistry, and engineering, he contributes to cutting-edge advancements that redefine the future of materials science. 🏗️⚡🔍

Awards & Honors 🏆🎖️

  • High-Level Young Talent, Yunnan Province 🏅
  • Young & Middle-Aged Backbone Teacher, Yunnan University 🎓
  • Principal Investigator of NSFC Project 🔬
  • Leader of Yunnan Province Major Science & Technology Programs 🚀
  • Published 100+ Research Papers in Prestigious Journals 📖
  • Author of a Specialized Material Science Textbook 📚
  • Holder of 5 Software Copyrights for Scientific Innovations 💻

Publication Top Notes

  • Machine learning inverse design of high-strength mid-temperature Ag-based solders

    • Journal: Materials & Design
    • Publication Date: April 2025
    • DOI: 10.1016/j.matdes.2025.113736
    • Contributors: Chengchen Jin, Kai Xiong, Yingwu Wang, Shunmeng Zhang, Yunyang Ye, Hui Fang, Aimin Zhang, Hua Dai, Yong Mao
  • Phase size induced anomalous plastic behavior in AuSn-Au₅Sn duplex alloy

    • Journal: Materials Science and Engineering: A
    • Publication Date: March 2025
    • DOI: 10.1016/j.msea.2025.147911
    • Contributors: Rui Ma, Yingjie Sun, Hualong Ge, Wenyan Zhou, Haijun Wu, Lihua Ma, Shaoping Lu, Shunmeng Zhang, Zhiwei Xia, Kai Xiong, et al.
  • High‐throughput calculation integrated with stacking ensemble machine learning for predicting elastic properties of refractory multi‐principal element alloys

    • Journal: Materials Genome Engineering Advances
    • Publication Date: March 12, 2025
    • DOI: 10.1002/mgea.70004
    • Contributors: Chengchen Jin, Kai Xiong, Congtao Luo, Hui Fang, Chaoguang Pu, Hua Dai, Aimin Zhang, Shunmeng Zhang, Yingwu Wang
  • Strength-ductility trade-off in NbTaTiV refractory multi-principal element alloys

    • Journal: Materials Science and Engineering: A
    • Publication Date: February 2025
    • DOI: 10.1016/j.msea.2024.147677
    • Contributors: Yingwu Wang, Kai Xiong, Lingjie Yang, Shunmeng Zhang, Hui Fang, Hua Dai, Chengchen Jin, Yunyang Ye, Congtao Luo, Junjie He, et al.
  • Hf-induced strengthening and lattice distortion in HfNbTaTiV refractory multi-principal element alloys

    • Journal: Journal of Materials Research and Technology
    • Publication Date: January 2025
    • DOI: 10.1016/j.jmrt.2024.12.256
    • Contributors: Yingwu Wang, Kai Xiong, Wei Li, Chengchen Jin, Haijun Wu, Hua Dai, Zihang Yang, Hongmo Yang, Shunmeng Zhang

 

Mr. Issam Forsal | Materials Science | Best Researcher Award

Mr. Issam Forsal | Materials Science | Best Researcher Award

Mr. Issam Forsal , Université Sultan Moulay Slimane , Morocco.

Mr. Issam Forsal, is an Authorized Higher Education Professor and Head of the Process Engineering Department at the Higher School of Technology, Beni Mellal, Sultan Moulay Slimane University 🇲🇦. Specializing in Analytical Chemistry, he also serves as the Deputy Director of the Laboratory of Applied Engineering and Technology (LITA) 🏛️. Since 2015, he has been a teacher-researcher, contributing to materials science, electrochemical kinetics, and corrosion studies. His expertise extends to financial and economic management, having previously served as a project manager at the university 🎓💡.

Publication Profile

Scopus
Orcid

Education & Experience 🎓🔬

Education:
  • Specialization in Analytical Chemistry 🧪
  • Advanced training in Process Engineering and Materials Science ⚙️
Experience:
  • Since 2015: Professor & Researcher at Higher School of Technology, Beni Mellal 👨‍🏫
  • 2011-2016: Facilitator in Understanding Business Program (CLE) 🤝📈
  • 2010-2014: Project Manager at Sultan Moulay Slimane University (Economic & Financial Affairs) 💰🏛️
  • Expertise in budget management, audits, purchasing processes, and research project execution 📊

Summary Suitability

Mr. Issam Forsal is a distinguished researcher and educator specializing in Analytical Chemistry, with significant contributions to corrosion inhibition, electrochemical analysis, and eco-friendly material applications. As Deputy Director of the Laboratory of Applied Engineering and Technology (LITA) at Sultan Moulay Slimane University, Morocco, he has demonstrated exceptional leadership in advancing scientific research. His work on green corrosion inhibitors, published in high-impact journals, has provided innovative solutions for industrial applications, making him a strong contender for this prestigious award.

Professional Development 📚💼

Mr. Issam Forsal, has demonstrated strong professional growth in teaching, research, and university management. His academic contributions span materials science, electrochemical kinetics, and analytical chemistry 🧪⚛️. With a focus on corrosion, surface treatment, and experimental design, he integrates innovative methodologies into his teachings 📖✨. His leadership extends beyond the classroom, as he played a key role in university financial and project management, ensuring efficient resource allocation 💰📑. As a Deputy Director at LITA, he actively promotes technological advancements and fosters interdisciplinary research collaborations 🤝🔍.

Research Focus 🔬📑

Mr. Issam Forsal research primarily revolves around Analytical Chemistry and Process Engineering, with a strong emphasis on materials science, corrosion mechanisms, and electrochemical kinetics 🧪🛠️. His studies contribute to the development of innovative corrosion protection techniques and surface treatment methodologies ⚛️🔍. Additionally, he explores experimental design strategies for chemical analysis and industrial applications 📊⚙️. His work also intersects with environmental chemistry, focusing on sustainable and eco-friendly material processing techniques 🌱🔬. Through collaborations within LITA, he integrates cutting-edge analytical methods to enhance industrial and academic research outcomes 🚀📖.

Awards & Honors 🏆🎖️

🏅 Recognized for excellence in higher education teaching and research 👨‍🏫📚
🏅 Acknowledged for contributions to analytical chemistry and materials science 🧪⚛️
🏅 Honored for leadership in financial and economic management in academia 💰🏛️
🏅 Received multiple grants for research in electrochemical kinetics and surface treatment 🔬🔍
🏅 Appreciation for mentoring and academic program facilitation at Sultan Moulay Slimane University 🎓💡

Publication Top Notes

1️⃣ Investigation of Ziziphus Lotus Leaves Extract Corrosion Inhibitory Impact on Carbon Steel in a Molar Hydrochloric Acid Solution
📌 Portugaliae Electrochimica Acta, 2023 | Journal article
📄 DOI: 10.4152/pea.2023410203
📑 ISSN: 1647-1571
👥 Contributors: S. Lahmady, O. Anor, I. Forsal, et al.

2️⃣ Electrochemical Examination of an Eco-friendly Corrosion Inhibitor “Almond Flower Extract” for Carbon Steel in Acidic Medium (1 M HCl)
📌 Analytical and Bioanalytical Electrochemistry, 2022 | Journal article
📄 EID: 2-s2.0-85131576767
📑 ISSN: 2008-4226
👥 Contributors: S. Lahmady, O. Anor, I. Forsal, H. Hanin, K. Benbouya

3️⃣ An Experimental Investigation of a Date Seeds Hydro-acetonic Mixture Extract Inhibitor for Corrosion Inhibition of Carbon Steel in an Acidic Medium at High Temperatures
📌 Biointerface Research in Applied Chemistry, 2022-07-10 | Journal article
📄 DOI: 10.33263/briac133.271
📑 ISSN: 2069-5837

4️⃣ The Inhibition Action of Essential Oil of J. Juniperus Phoenicea on the Corrosion of Mild Steel in Acidic Media
📌 Portugaliae Electrochimica Acta, 2018 | Journal article
📄 DOI: 10.4152/pea.201802077
📄 EID: 2-s2.0-85040185247
👥 Contributors: Y. Elkhotfi, I. Forsal, E.M. Rakib, B. Mernari

5️⃣ Comparative Spectroscopic and Electrochemical Study of N-1 or N-2-Alkylated 4-Nitro and 7-Nitroindazoles
📌 Arabian Journal of Chemistry, 2017 | Journal article
📄 DOI: 10.1016/j.arabjc.2016.05.005
📄 EID: 2-s2.0-85006700464
👥 Contributors: G. Micheletti, A. Kouakou, C. Boga, P. Franchi, M. Calvaresi, L. Guadagnini, M. Lucarini, E.M. Rakib, D. Spinelli, D. Tonelli, et al.

Conclusion 🎖️

Mr. Issam Forsal  groundbreaking research in corrosion science, dedication to sustainable chemistry, and outstanding academic contributions make him a highly deserving candidate for the Best Researcher Award. His work has direct industrial applications, environmental impact, and scientific advancements, reflecting excellence in innovative research and academic leadership.

Rumyana Lazarova | Materials Science | Best Researcher Award

Rumyana Lazarova | Materials Science | Best Researcher Award

Prof. Dr. Rumyana Lazarova, Institute of Metal Science, Equipment and Technologies with Hydro- and Aerodynamics Centre, Bulgaria.

Yong Yu | Materials | Best Researcher Award

Yong Yu | Materials | Best Researcher Award

Dr. Yong Yu , Qingdao University of Technology , China.

Dr. Yong Yu is a dedicated researcher in civil engineering at the School of Civil Engineering, Qingdao University of Technology, China. His expertise lies in high-performance concrete, crumb rubber concrete, and steam-cured concrete. With a strong academic background and a passion for sustainable materials, Dr. Yu has contributed extensively to advancing concrete technology. His research aims to enhance durability, eco-friendliness, and structural performance in construction. He actively collaborates with academia and industry to implement innovative solutions in civil engineering. 📚🔬🏢

Publication Profile

Orcid
Scopus

Education & Experience 📖👷

  • Ph.D. in Civil Engineering – Specialized in advanced concrete materials 🎓🏗️
  • Professor at Qingdao University of Technology – Leading research in sustainable concrete 🏫🔬
  • Industry Collaboration – Works with construction firms on eco-friendly materials 🤝🏢
  • Published Researcher – Numerous papers on high-performance and rubberized concrete 📄📊

Suitability summary

Dr. Yong Yu, a distinguished researcher at the School of Civil Engineering, Qingdao University of Technology, China, is an exceptional candidate for the Best Researcher Award. His groundbreaking contributions to high-performance concrete, crumb rubber concrete, and steam-cured concrete have significantly advanced sustainable and durable construction materials. His expertise in optimizing concrete properties for enhanced strength, durability, and eco-friendliness makes him a leading innovator in civil engineering. 📚🌍

Professional Development 🔬🏗️

Dr. Yong Yu actively engages in cutting-edge research on sustainable concrete materials. His contributions focus on enhancing durability, strength, and environmental benefits in construction. He regularly publishes in top-tier journals, presents at international conferences, and collaborates with industry experts to develop innovative solutions. As a mentor, he supervises students and researchers in civil engineering, guiding them towards practical and impactful research. His work not only advances theoretical knowledge but also influences real-world construction practices, ensuring a balance between strength and sustainability🌍🏗️📚

Research Focus 🔍🏢

Dr. Yong Yu’s research is centered on developing high-performance, durable, and eco-friendly concrete materials. His focus includes:

  • High-Performance Concrete (HPC): Enhancing durability, strength, and resistance to extreme conditions 🏗️💪
  • Crumb Rubber Concrete: Utilizing recycled rubber to improve flexibility and sustainability 🌱♻️
  • Steam-Cured Concrete: Optimizing rapid curing processes for efficient construction 🏭🔥

His studies contribute to reducing carbon footprints, improving material longevity, and promoting sustainable construction worldwide. 🌍🔬🏢

Awards & Honors 🏆🎖️

  • Outstanding Researcher Award – Recognized for contributions to concrete innovation 🏅🏗️
  • Best Paper Award – Published groundbreaking research in material science 📜🏆
  • Excellence in Teaching Award – Acknowledged for mentoring and academic leadership 🎓👨‍🏫
  • Industry Innovation Recognition – Collaborated on sustainable construction projects 🏢♻️

Publication Top Notes

  • 🧪 “Molecular and structural basis of the dual regulation of the polycystin-2 ion channel by small-molecule ligands” (2024) – Proceedings of the National Academy of Sciences
  • 🧬 “Structural basis for human Cav1.2 inhibition by multiple drugs and the neurotoxin calciseptine” (2023) – Cell
  • 🔬 “The diverse effects of pathogenic point mutations on ion channel activity of a gain-of-function polycystin-2” (2023) – Journal of Biological Chemistry
  • 🧫 “Structures of the R-type human Cav2.3 channel reveal conformational crosstalk of the intracellular segments” (2022) – Nature Communications
  • 🧩 “Structural basis for the severe adverse interaction of sofosbuvir and amiodarone on L-type Cav channels” (2022) – Cell
  • 🧪 “The roles of two extracellular loops in proton sensing and permeation in human Otop1 channel” (2022) – Communications Biology
  • 🧬 “The ion channel TRPM7 regulates zinc depletion-induced MDMX degradation” (2021) – Journal of Biological Chemistry

 

Farzad Pashmforoush | composite materials | Best Researcher Award

Farzad Pashmforoush | composite materials | Best Researcher Award

Assoc. Prof. Dr. Farzad Pashmforoush , Best Researcher Award , Iran.

Dr. Farzad Pashmforoush 🎓 is an Associate Professor at the University of Maragheh, specializing in Mechanical Engineering. With a Ph.D. from Amirkabir University of Technology (2015), his expertise spans composite materials, finite element analysis, artificial intelligence, and non-destructive testing. His research contributions, recognized with 411 citations and an h-index of 9 📊, focus on damage identification, numerical modeling, and advanced manufacturing techniques. Dr. Pashmforoush has authored numerous high-impact publications 📑 and continues to push the boundaries of mechanical engineering and material sciences with innovative methodologies. 🚀

Publication Profile

Google Scholar
Orcid
Scopus

Education & Experience

📌 Bachelor’s (2005-2009): Mechanical Engineering, University of Tabriz (Ranked 1st, 18.86 GPA)
📌 Master’s (2009-2011): Mechanical Engineering, Amirkabir University of Technology (Ranked 1st, 18.52 GPA)
📌 Ph.D. (2011-2015): Mechanical Engineering, Amirkabir University of Technology (19.26 GPA)
📌 Current Position: Associate Professor, University of Maragheh 🏫

Suitabilty Summary

Dr. Farzad Pashmforoush, an Associate Professor at the University of Maragheh, has made outstanding contributions to the field of mechanical engineering, composite materials, and non-destructive testing (NDT). His pioneering research in damage characterization, artificial intelligence applications in material analysis, and advanced manufacturing techniques has significantly impacted the scientific community, making him a strong candidate for the Best Researcher Award.

Professional Development

Dr. Pashmforoush is actively engaged in cutting-edge research and academic mentoring 🎯. He has pioneered advancements in composite material behavior, AI-driven structural analysis, and non-destructive evaluation 🛠️. His research integrates numerical simulations, experimental techniques, and machine learning algorithms 🤖 to enhance manufacturing and material testing. With extensive experience in FEM modeling and fracture mechanics, he collaborates with global researchers to develop robust, high-performance materials 🌍. His contributions significantly impact aerospace, automotive, and civil engineering applications, making him a distinguished figure in mechanical and materials engineering🔬✨

Research Focus

Dr. Pashmforoush’s research spans multiple domains of mechanical and material sciences 🏗️. His work on composite materials explores damage identification and characterization using advanced acoustic emission techniques 🎧. He employs finite element modeling (FEM) for fracture mechanics simulations 🖥️ and integrates artificial intelligence and deep learning 🤖 for autonomous damage recognition in composite structures. His studies also delve into non-destructive testing (NDT), optical glass finishing, and nanocomposite material analysis 🧪. His research aims to enhance the durability, performance, and sustainability of advanced engineering materials 🚀, bridging the gap between experimental mechanics and AI-driven simulations.

Awards & Honors

🏆 1st Rank in B.Sc. & M.Sc. Mechanical Engineering
🏆 Outstanding Researcher Award in Composite Materials & FEM
🏆 Best Ph.D. Dissertation Award on Magnetic Abrasive Finishing 🏅
🏆 Numerous High-Impact Publications with 400+ Citations 📊
🏆 Recognized Reviewer for Leading Scientific Journals ✍️

Publications Top Notes

📌 Autonomous damage recognition in visual inspection of laminated composite structures using deep learning – S Fotouhi, F Pashmforoush, M Bodaghi, M Fotouhi | Composite Structures (2021) | 📖 Cited by: 87

📌 Characterization of composite materials damage under quasi-static three-point bending test using wavelet and fuzzy C-means clustering – M Fotouhi, H Heidary, M Ahmadi, F Pashmforoush | Journal of Composite Materials (2012) | 📖 Cited by: 86

📌 Damage classification of sandwich composites using acoustic emission technique and k-means genetic algorithm – F Pashmforoush, R Khamedi, M Fotouhi, M Hajikhani, M Ahmadi | Journal of Nondestructive Evaluation (2014) | 📖 Cited by: 83

📌 Acoustic emission-based damage classification of glass/polyester composites using harmony search k-means algorithm – F Pashmforoush, M Fotouhi, M Ahmadi | Journal of Reinforced Plastics and Composites (2012) | 📖 Cited by: 72

📌 Damage characterization of glass/epoxy composite under three-point bending test using acoustic emission technique – F Pashmforoush, M Fotouhi, M Ahmadi | Journal of Materials Engineering and Performance (2012) | 📖 Cited by: 66