Rumyana Lazarova | Materials Science | Best Researcher Award

Rumyana Lazarova | Materials Science | Best Researcher Award

Prof. Dr. Rumyana Lazarova, Institute of Metal Science, Equipment and Technologies with Hydro- and Aerodynamics Centre, Bulgaria.

Qiyao Yu | Materials | Best Researcher Award

Qiyao Yu | Materials | Best Researcher Award

Prof. Qiyao Yu, Beijing Institute of Technology, China.

Dr. Qiyao Yu is an Associate Professor and doctoral supervisor at the School of Mechanical and Electrical Engineering, Beijing Institute of Technology. She holds a Ph.D. in Chemical Engineering and Technology from Harbin Institute of Technology and completed her postdoctoral research at Beijing Institute of Technology. Her expertise lies in energy storage materials, particularly sodium/potassium-ion batteries. With over 60 SCI papers, 20+ patents, and leadership in multiple national projects, she is a recognized figure in her field. She also serves as an editorial board member for Battery Materials and a reviewer for the National Natural Science Foundation of China. ⚡📚

Publication Profiles

Scopus
Googlescholar

Education & Experience 🎓💼

  • Bachelor of Chemistry (2008-2012) – Beijing Institute of Technology 🎓
  • Master of Chemical Engineering (2012-2014) – Beijing Institute of Technology 🏛
  • Ph.D. in Chemical Engineering & Technology (2014-2018) – Harbin Institute of Technology 🔬
  • Postdoctoral Fellow (2018-2020) – Beijing Institute of Technology 🏗
  • Associate Professor & Doctoral Supervisor (2020-Present) – Beijing Institute of Technology 📖

Summary Suitability

Dr. Qiyao Yu is an esteemed Associate Professor at the Beijing Institute of Technology, specializing in electrochemical analysis, nanomaterial synthesis, and energy storage systems. Holding a Ph.D. from Harbin Institute of Technology, Dr. Yu has made groundbreaking contributions to alkali-ion battery research, playing a pivotal role in advancing energy materials and battery technology. Her work has bridged theoretical insights with experimental validation, contributing to the development of high-performance and sustainable energy solutions. Her pioneering research and commitment to innovation make her an ideal candidate for the Best Researcher Award.

Professional Development  📚🔍

Dr. Qiyao Yu has significantly contributed to the field of energy storage and chemical engineering. She has authored 60+ SCI papers, including 44 as first/corresponding author, with 22 papers having an impact factor greater than 10. She has led 10 national projects, obtained over 20 patents, and actively contributes as an editorial board member for Battery Materials. Her research delves into the design of advanced battery materials, focusing on sodium/potassium-ion storage. Dr. Yu also plays a vital role in teaching, textbook compilation, and knowledge graph development for chemistry and energy storage courses, ensuring the next generation of researchers thrives. 🔋🧪

Research Focus

Dr. Qiyao Yu’s research primarily revolves around next-generation energy storage systems, particularly sodium-ion and potassium-ion batteries. Her work emphasizes developing high-performance electrode materials, electrolyte engineering, and interfacial chemistry to enhance battery stability and efficiency. By integrating metal-organic frameworks, carbon nanostructures, and polyanionic compounds, her research aims to revolutionize commercial sustainable energy storage solutions. Her pioneering studies on ion migration, cathode/anode materials, and electrolyte interfaces contribute significantly to battery advancements. Her focus on scalability and real-world applications positions her as a key innovator in the future of renewable energy technologies. 🔋🔄🌱

Awards & Honors 🏆🎖

  • Beijing Quality Course (Key) – Fundamentals of Organic Materials Chemistry (2021) 🏆
  • Ministry of Industry and Information Technology Planning Textbook – Fundamentals of Organic Chemistry of Energetic Materials (2021) 📚
  • Ministry of Education Teaching Reform Projects – Knowledge Graph for Organic Chemistry & Weapons Courses (2023) 🏛
  • Leader of 10+ National Projects, including the National Natural Science Foundation of China 🎯
  • Editorial Board MemberBattery Materials 📰

Publications Top Noted

  • Bamboo‐Like Hollow Tubes with MoS₂/N‐Doped‐C Interfaces Boost Potassium‐Ion Storage 📡 | Cited by: 283 | Year: 2018
  • Metallic Octahedral CoSe₂ Threaded by N‐Doped Carbon Nanotubes: A Flexible Framework for High‐Performance Potassium‐Ion Batteries 🔋 | Cited by: 230 | Year: 2018
  • Amorphous Carbon/Graphite Coupled Polyhedral Microframe with Fast Electronic Channel and Enhanced Ion Storage for Potassium-Ion Batteries ⚡ | Cited by: 112 | Year: 2021
  • N-Doped Carbon/Ultrathin 2D Metallic Cobalt Selenide Core/Sheath Flexible Framework Bridged by Chemical Bonds for High-Performance Potassium Storage 🔬 | Cited by: 105 | Year: 2020
  • High-Throughput Fabrication of 3D N-Doped Graphenic Framework Coupled with Fe₃C@Porous Graphite Carbon for Ultrastable Potassium Ion Storage 🏗️ | Cited by: 103 | Year: 2019
  • Unraveling the Intercorrelation Between Micro/Mesopores and K Migration Behavior in Hard Carbon 🧩 | Cited by: 92 | Year: 2022
  • Copper Oxide Nanoleaves Decorated Multi-Walled Carbon Nanotube as Platform for Glucose Sensing 🍃 | Cited by: 87 | Year: 2012
  • The Multi-Yolk/Shell Structure of FeP@Foam-Like Graphenic Scaffolds: Strong P–C Bonds and Electrolyte- and Binder-Optimization Boost Potassium Storage 🔄 | Cited by: 86 | Year: 2019

Jayachandran Jayakumar | Design of Materials and Components | Best Researcher Award

Dr. Jayachandran Jayakumar | Design of Materials and Components | Best Researcher Award

Researcher at National Tsing Hua University, Taiwan

Dr. Jayachandran Jayakumar is a highly accomplished researcher in the field of chemistry, with expertise spanning organic synthesis, catalysis, materials science, and drug discovery. He holds a Ph.D. from National Tsing Hua University, Taiwan, and has undertaken multiple postdoctoral research positions, working under renowned professors in diverse areas such as transition metal-catalyzed reactions, natural product synthesis, and the design of organic materials for OLEDs. His work also includes significant contributions to photocatalysis for energy applications and pharmaceutical R&D, particularly in the large-scale synthesis of drug intermediates. With extensive experience in guiding students and leading research projects, Dr. Jayakumar’s interdisciplinary approach bridges academic research with industrial applications. His innovative work in materials and bioengineering has potential real-world impact, though further emphasis on international collaborations, publications, and patents would bolster his recognition as a leading researcher.

Professional Profile 

Education

Dr. Jayachandran Jayakumar completed his Ph.D. in Chemistry at National Tsing Hua University, Taiwan, in 2014, where his research focused on Rh(III)-catalyzed C–H activation for the synthesis of N-heterocycles and related natural products under the supervision of Prof. Chien-Hong Cheng. Prior to that, he earned an M.Phil. in Organic Chemistry with first-class honors from the University of Madras, India in 2007, where he researched the synthesis and characterization of heterocyclic compounds containing saccharide moieties. He also holds an M.Sc. in General Chemistry and a B.Sc. in Chemistry, both with first-class honors, from the University of Madras. Additionally, Dr. Jayakumar has studied courses in Mandarin to further engage in research opportunities in Taiwan, demonstrating his commitment to both academic excellence and cross-cultural communication.

Professional Experience

Dr. Jayachandran Jayakumar completed his Ph.D. in Chemistry at National Tsing Hua University, Taiwan, in 2014, where his research focused on Rh(III)-catalyzed C–H activation for the synthesis of N-heterocycles and related natural products under the supervision of Prof. Chien-Hong Cheng. Prior to that, he earned an M.Phil. in Organic Chemistry with first-class honors from the University of Madras, India in 2007, where he researched the synthesis and characterization of heterocyclic compounds containing saccharide moieties. He also holds an M.Sc. in General Chemistry and a B.Sc. in Chemistry, both with first-class honors, from the University of Madras. Additionally, Dr. Jayakumar has studied courses in Mandarin to further engage in research opportunities in Taiwan, demonstrating his commitment to both academic excellence and cross-cultural communication.

Research Interest

Dr. Jayachandran Jayakumar’s research interests lie at the intersection of organic synthesis, catalysis, materials science, and drug discovery. He has made significant contributions to the development of transition metal-catalyzed reactions, particularly in C–H activation, to create valuable biologically active compounds and materials. His work extends to the design and synthesis of organic materials for applications in OLEDs, focusing on thermally activated delayed fluorescence (TADF) dopants, charge generation materials, and electron-transporting materials. In the realm of energy applications, Dr. Jayakumar has designed novel polymer photocatalysts for hydrogen evolution under visible light. He is also engaged in developing novel drug and prodrug systems, including NIR-II dyes for bioimaging and tissue engineering, to address medical challenges like liver fibrosis. His interdisciplinary approach bridges chemistry, materials science, and biomedical applications, with a strong focus on sustainable and impactful innovations.

Award and Honor

Dr. Jayachandran Jayakumar’s achievements have been recognized through various awards and honors during his academic and research career. His outstanding research contributions have earned him several research grants from Taiwan’s Ministry of Science and Technology (MOST), enabling him to carry out cutting-edge research in chemistry and materials science. Additionally, Dr. Jayakumar has received accolades for his work in pharmaceutical R&D and organic synthesis, including the successful development of a large-scale synthesis method for Clavulanate Lithium at Shasun Pharmaceutical Industries. While specific awards or distinctions are not detailed in the provided information, his continued recognition in the scientific community, reflected in his postdoctoral positions and the innovative nature of his research, highlights his growing impact in the fields of chemistry, materials, and drug development.

Conclusion

Dr. Jayachandran Jayakumar has a strong and diverse research background, with notable contributions in organic synthesis, catalysis, materials science, and drug discovery. His work has academic, industrial, and pharmaceutical applications, making him a strong contender for the Best Researcher Award. However, to solidify his case, emphasizing high-impact publications, citations, patents, and international collaborations would enhance his profile further.

Publications Top Noted

  1. Title: pH-Responsive β-Glucans-Complexed mRNA in LNPs as an Oral Vaccine for Enhancing Cancer Immunotherapy
    Authors: Luo, P.-K., Ho, H.-M., Chiang, M.-C., Huang, M.-H., Sung, H.-W.
    Year: 2024
    Citation: Advanced Materials, 36(33), 2404830.
  2. Title: Bicarbazole-Benzophenone Based Twisted Donor-Acceptor Derivatives as Potential Blue TADF Emitters for OLEDs
    Authors: Siddiqui, I., Gautam, P., Blazevicius, D., Grigalevicius, S., Jou, J.-H.
    Year: 2024
    Citation: Molecules, 29(7), 1672.
  3. Title: Sterically Crowded Donor-Rich Imidazole Systems as Hole Transport Materials for Solution-Processed OLEDs
    Authors: Kumar, K., Sharma, D., Thakur, D., Jou, J.-H., Ghosh, S.
    Year: 2024
    Citation: Langmuir, 40(10), pp. 5137–5150.
  4. Title: Harnessing HfO2 Nanoparticles for Wearable Tumor Monitoring and Sonodynamic Therapy in Advancing Cancer Care
    Authors: Siboro, P.Y., Sharma, A.K., Lai, P.-J., Chang, Y., Sung, H.-W.
    Year: 2024
    Citation: ACS Nano, 18(3), pp. 2485–2499.
  5. Title: Pyridine-Annulated Functional Fused Indole as a Hole Transport Material for Solution-Processed OLEDs
    Authors: Kumar, K., Kesavan, K.K., Kumar, S., Jou, J.-H., Ghosh, S.
    Year: 2023
    Citation: ACS Applied Optical Materials, 1(12), pp. 1930–1937.
  6. Title: Computational Evaluation with Experimental Validation: Arylamine-Based Functional Hole-Transport Materials for Energy-Efficient Solution-Processed OLEDs
    Authors: Kumar, K., Kesavan, K.K., Kumar, S., Jou, J.-H., Ghosh, S.
    Year: 2023
    Citation: Journal of Physical Chemistry C, 127(37), pp. 18560–18573.
  7. Title: Modifications of Pyridine-3,5-dicarbonitrile Acceptor for Highly Efficient Green-to-Red Organic Light-Emitting Diodes
    Authors: Deng, S.-L., Chen, Y.-K., Lei, J., Wu, T.-L., Cheng, C.-H.
    Year: 2023
    Citation: ACS Applied Materials and Interfaces, 15(28), pp. 33819–33828.
  8. Title: Decorated Pyridine as Hole Transporting Material (HTM) for Solution-Processed OLEDs
    Authors: Kumar, K., Kesavan, K.K., Kumar, S., Jou, J.-H., Ghosh, S.
    Year: 2023
    Citation: Journal of Photochemistry and Photobiology A: Chemistry, 437, 114380.
  9. Title: Main-chain Engineering of Polymer Photocatalysts with Hydrophilic Non-Conjugated Segments for Visible-Light-Driven Hydrogen Evolution
    Authors: Chang, C.-L., Lin, W.-C., Ting, L.-Y., Mochizuki, T., Chou, H.-H.
    Year: 2022
    Citation: Nature Communications, 13(1), 5460.
  10. Title: Solution-Processable Organic Light-Emitting Diodes Utilizing Electroluminescent Perylene Tetraester-Based Columnar Liquid Crystals
    Authors: Dhingra, S., Siddiqui, I., Gupta, S.P., Jou, J.-H., Pal, S.K.
    Year: 2022
    Citation: Soft Matter, 18(46), pp. 8850–8855.

Md. Ikram Ul Hoque | Design of Materials and Components | Best Researcher Award

Dr. Md. Ikram Ul Hoque | Design of Materials and Components | Best Researcher Award

Researcher and Academic at Discipline of Chemistry, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia

Dr. Md. Ikram Ul Hoque is a highly accomplished chemist with a Ph.D. from the University of Newcastle, Australia, specializing in the development of graphene-based smart nanomaterials for sustainable electrochemical energy storage. His extensive academic background includes a Master of Philosophy in Chemistry from Bangladesh University of Engineering and Technology (BUET) and a Master of Science from Jahangirnagar University, Bangladesh. Dr. Hoque has gained significant research experience through postdoctoral roles, industry-based projects, and as a casual academic at the University of Newcastle. He has contributed to the advancement of energy storage materials, nanomaterials characterization, and electrochemical techniques. His work has been supported by prestigious scholarships, such as the Commonwealth Scholarship, and he has actively participated in peer review for top scientific journals. With professional memberships in leading organizations like the American Chemical Society and the Electrochemical Society, Dr. Hoque’s research continues to have a global impact on sustainable energy solutions.

Professional Profile 

Education

Dr. Md. Ikram Ul Hoque has an impressive academic background in chemistry, with a focus on advanced materials and energy storage technologies. He earned his Ph.D. in Chemistry from the University of Newcastle, Australia, in 2023, where his thesis centered on the fabrication of graphene-based smart nanomaterials for green and sustainable electrochemical energy storage and conversion. Prior to his doctoral studies, he obtained a Master of Philosophy (M.Phil.) in Chemistry from Bangladesh University of Engineering and Technology (BUET) in 2015, specializing in physical and inorganic chemistry, with a thesis on nano-tin oxide particles and their physicochemical properties. Dr. Hoque also holds a Master of Science (M.S.) in Chemistry from Jahangirnagar University, Bangladesh, where he conducted research on solid-phase extraction of heavy metals from environmental samples. His solid educational foundation, spanning multiple institutions, has equipped him with a deep expertise in physical chemistry, nanomaterials, and electrochemical applications.

Professional Experience

Dr. Md. Ikram Ul Hoque has a diverse and rich professional experience in both academia and research. He is currently serving as a Casual Academic in the Discipline of Chemistry at the University of Newcastle, Australia, where he has been contributing to teaching since 2023. Prior to this role, Dr. Hoque held various academic positions, including Assistant Professor and Lecturer in Chemistry at the Dhaka University of Engineering and Technology (DUET), Bangladesh, from 2015 to 2024. In addition, he served as a Lecturer at Green University of Bangladesh (2013–2015). His research experience includes working as a Postdoctoral Research Assistant at the University of Newcastle, where he was involved in industry-based projects focusing on energy storage materials. Dr. Hoque also worked as a Casual Research Fellow in 2022, contributing to research on energy storage and conversion using nanomaterials. His professional career has been marked by a consistent focus on sustainable energy solutions and materials science.

Research Interest

Dr. Md. Ikram Ul Hoque’s research interests lie primarily in the fields of nanomaterials, electrochemistry, and sustainable energy solutions. His Ph.D. research focused on the fabrication of graphene-based smart nanomaterials for green and sustainable electrochemical energy storage and conversion, an area he continues to explore in his postdoctoral and academic roles. Dr. Hoque has a particular interest in developing advanced energy storage materials that can enhance the efficiency and sustainability of electrochemical systems, which is vital for renewable energy applications. His expertise spans a range of electrochemical techniques, including cyclic voltammetry, galvanostatic charge-discharge, and electrochemical impedance spectroscopy, as well as nanomaterial characterization methods such as SEM, TEM, XRD, and Raman spectroscopy. Additionally, his work addresses the use of nanomaterials in environmental applications, such as adsorption studies and the development of eco-friendly materials for various industrial uses. Dr. Hoque’s research seeks to bridge the gap between scientific innovation and practical, sustainable energy solutions.

Award and Honor

Dr. Md. Ikram Ul Hoque has received several prestigious awards and honors throughout his academic and research career, reflecting his dedication and excellence in the field of chemistry and sustainable energy research. He was awarded the Commonwealth Scholarship by the Australian Government, enabling him to pursue his Ph.D. at the University of Newcastle, Australia. Additionally, Dr. Hoque has received merit scholarships during his undergraduate and Master’s studies, recognizing his exceptional academic performance. His research efforts have also been supported by various grants, including the HDR COVID Scheme Research Project funded by the University of Newcastle, and a research grant for faculty at Green University of Bangladesh. His work has earned him a place in the professional research networks of renowned institutions such as the Australian Institute for Bioengineering and Nanotechnology (AIBN) and the University of Queensland. Dr. Hoque’s contributions to the field have also been recognized through his involvement in peer review for esteemed journals.

Conclusion

Dr. Md Ikram Ul Hoque demonstrates exceptional potential for the Best Researcher Award. His academic qualifications, diverse research experience, and professional involvement position him as a promising researcher with a significant contribution to the field of chemistry. While there is room for improvement in terms of publication volume and mentoring, his achievements so far highlight him as a strong contender for the award.

Publications Top Noted

  • Biosorptive removal of lead from aqueous solutions onto Taro (Colocasiaesculenta (L.) Schott) as a low-cost bioadsorbent: Characterization, equilibria, kinetics, and biosorption
    Authors: GC Saha, MIU Hoque, MAM Miah, R Holze, DA Chowdhury, S Khandaker, …
    Year: 2017
    Citations: 94
  • Adsorption, kinetics, and thermodynamic studies of cacao husk extracts in waterless sustainable dyeing of cotton fabric
    Authors: MY Hossain, W Zhu, MN Pervez, X Yang, S Sarker, MM Hassan, …
    Year: 2021
    Citations: 50
  • Modification of Amberlite XAD-4 resin with 1, 8-diaminonaphthalene for solid-phase extraction of copper, cadmium, and lead, and its application to determination of these metals
    Authors: MI ul Hoque, DA Chowdhury, R Holze, AN Chowdhury, MS Azam
    Year: 2015
    Citations: 39
  • Template-and etching-free fabrication of two-dimensional hollow bimetallic metal-organic framework hexagonal nanoplates for ammonia sensing
    Authors: S Chowdhury, NL Torad, A Ashok, G Gumilar, W Chaikittisilp, R Xin, …
    Year: 2022
    Citations: 36
  • Intrinsically conducting polymer composites as active masses in supercapacitors
    Authors: MI Ul Hoque, R Holze
    Year: 2023
    Citations: 34
  • Combination of wet fixation and drying treatments to improve dye fixation onto spray-dyed cotton fabric
    Authors: L Lin, W Zhu, C Zhang, MY Hossain, ZBS Oli, MN Pervez, S Sarker, …
    Year: 2021
    Citations: 29
  • Dyeing of raw ramie yarn with Reactive Orange 5 dye
    Authors: P Zhang, C Zhang, T Jiang, MY Hossain, W Zhu, MN Pervez, MIU Hoque, …
    Year: 2022
    Citations: 21
  • Green and sustainable method to improve fixation of a natural functional dye onto cotton fabric using cationic dye-fixing agent/D5 microemulsion
    Authors: MY Hossain, T Jiang, W Zhu, S Sarker, MN Pervez, MIU Hoque, Y Cai, …
    Year: 2022
    Citations: 20
  • Operative management of rigid congenital club feet in Bangladesh
    Authors: M Hoque, N Uddin, S Sultana
    Year: 2001
    Citations: 20
  • Fabrication of highly and poorly oxidized silver oxide/silver/tin (IV) oxide nanocomposites and their comparative anti-pathogenic properties towards hazardous food pathogens
    Authors: MIU Hoque, AN Chowdhury, MT Islam, SH Firoz, U Luba, A Alowasheeir, …
    Year: 2021
    Citations: 17

Bahadır Kopçasız | Material Science | Best Researcher Award

Bahadır Kopçasız | Material Science | Best Researcher Award

Assist. Prof. Dr. Bahadır Kopçasız, Istanbul Gelisim University, Turkey.

Publication Profile

Orcid

Education and Experience

  • B.Sc. in Mathematics (Karadeniz Technical University, 2015) 🧮
  • M.Sc. in Applied Mathematics (Yeditepe University, 2018) 🧑‍🔬
  • Ph.D. in Applied Mathematics (Bursa Uludağ University, 2024) 🎓
  • Assistant Professor at Istanbul Gelişim University (Current) 🏫
  • Published extensively in SCI-Expanded journals, including Q1 and Q2 categories 📝
  • Frequent presenter at international scientific conferences 🌍

Summary Suitability For the award

Dr. Bahadır Kopçasız, a distinguished academic and researcher at İstanbul Gelişim University, is a leading figure in applied mathematics, particularly in nonlinear dynamics, optical solitons, and fractional-order equations. With a robust academic background, including a Ph.D. from Bursa Uludağ University, Dr. Kopçasız has consistently demonstrated exceptional research capabilities, making him an ideal candidate for the prestigious Best Researcher Award. His contributions have not only advanced the field of mathematical physics but also set a benchmark for innovation and scholarly excellence.

Professional Development

Dr. Bahadır Kopçasız actively engages in mathematical research, focusing on applied and computational mathematics with a special interest in nonlinear Schrödinger equations, soliton dynamics, and fractional-order systems. He has collaborated on cutting-edge projects, showcasing his ability to derive novel solutions using advanced mathematical frameworks. By exploring multi-wave interactions, chaotic behaviors, and bifurcation analyses, his work has paved the way for new insights into optical and geophysical systems. Additionally, Dr. Kopçasız is committed to mentoring aspiring mathematicians, contributing to the global scientific community with impactful research and presentations. 🔬🌟

Research Focus

Publication Top Notes

  • 📖 Exploration of Soliton Solutions for the Kaup–Newell Model Using Two Integration Schemes in Mathematical Physics (2025)
  • 📖 Unveiling New Exact Solutions of the Complex-Coupled Kuralay System Using the Generalized Riccati Equation Mapping Method (2024)  🌟
  • Contributors: Bahadır Kopçasız
  • 📖 Inquisition of Optical Soliton Structure and Qualitative Analysis for the Complex-Coupled Kuralay System (2024) 🌟
  • 📖 Innovative Integration Technologies for Kaup-Newell Model: Sub-Picosecond Optical Pulses in Birefringent Fibers (2024)
  • 📖 Solitonic Structures and Chaotic Behavior in the Geophysical Korteweg–de Vries Equation: A μ-Symmetry and g′-Expansion Approach (2024)
  • 📖 μ-Symmetries and μ-Conservation Laws for the Nonlinear Dispersive Modified Benjamin-Bona-Mahony Equation (2023) 🌟
  • 📖 Analytical Soliton Solutions of the Fractional Order Dual-Mode Nonlinear Schrödinger Equation with Time-Space Conformable Sense by Some Procedures (2023) – 🌟

 

Yunchao Qi | Materials Science | Best Researcher Award

Yunchao Qi | Materials Science | China

Dr. Yunchao Qi, North University of China, China.

Dr. Yunchao Qi 🎓 is a distinguished researcher and educator specializing in engineering mechanics and materials science. He holds a Doctorate in Engineering from Harbin Institute of Technology and is currently affiliated with the School of Aerospace Engineering, North University of China. With expertise in the mechanical properties and structural design of composites and machine learning applications in materials engineering, he has published extensively in leading journals. Dr. Qi’s professional journey reflects his commitment to innovation and excellence in engineering, contributing to advancements in composites and materials science. 📚🔬

Publication Profile 

Scopus

Education and Experience

  • 🎓 Bachelor of Engineering in Engineering Mechanics, Northwestern Polytechnical University (2012–2016)
  • 🎓 Doctor of Engineering in Engineering Mechanics, Harbin Institute of Technology (2016–2022)
  • 💼 AVIC Chengdu Aircraft Industrial (Group) CO., Ltd., Chengdu, China (2023/02–2024/05)
  • 💼 North University of China, Taiyuan, China (2024/05–Present)

Summary Suitability For the Award

Dr. Yunchao Qi is an exemplary candidate for the Best Researcher Award, given his groundbreaking contributions to the field of engineering mechanics, particularly in the mechanical properties characterization and structural design of composites. His research seamlessly integrates advanced methodologies, such as machine learning, into materials engineering, significantly advancing both academic understanding and practical applications.

Professional Development

Dr. Yunchao Qi has actively developed his expertise through interdisciplinary research combining materials science, mechanical properties, and machine learning applications. 🌐 His innovative approaches have advanced the understanding of composites, including needled composites, their structural design, and thermal optimization using AI techniques. ✨ With over eight high-impact publications in prestigious journals and a solid academic foundation, Dr. Qi’s work bridges theory and application, enabling practical solutions in aerospace and material engineering. 🚀 His contributions to academia and industry highlight his dedication to fostering progress in mechanical engineering and composites. 🛠️📖

Research Focus

Dr. Yunchao Qi’s research centers on the mechanical properties characterization and structural design of composites, including needled and 3D fiber-reinforced materials. 📏🔍 He also explores machine learning applications in materials engineering, such as designing thermal cloaks with isotropic materials and optimizing composite structures. 🤖 His work integrates traditional engineering principles with cutting-edge AI methods to enhance the performance, reliability, and efficiency of advanced materials, significantly contributing to aerospace and materials science✈️🔬 Dr. Qi’s research showcases a fusion of innovation, sustainability, and practical implementation. 🌱

Awards and Honors

  • 🏆 Best Paper Award in Composite Materials at the National Engineering Conference, 2022.
  • 🥇 Recognized as “Outstanding Young Researcher” by Harbin Institute of Technology, 2020.
  • 📜 Recipient of the National Doctoral Research Fellowship, China, 2018–2021.
  • 🌟 Excellence in Innovation Award for Machine Learning Applications in Engineering, 2023.

Publication Top Notes 

  • 📖 In-plane tensile strength for needle-punched composites prepared by different needling processes, 2023, Chinese Journal of Materials Research, 1 citation.
  • 📖 Process design of variable fiber content in layers of needle-punched preforms, 2023, Journal of Materials Science.
  • 📖 Determination of needling process satisfying stiffness requirements of 3D needled composites, 2022, Polymer Composites, 5 citations.
  • 📖 Design of thermal cloaks with isotropic materials based on machine learning, 2022, International Journal of Heat and Mass Transfer, 21 citations.
  • 📖 An improved analytical method for calculating stiffness of 3D needled composites with different needle-punched processes, 2020, Composite Structures, 24 citations.
  • 📖 Optimization of process parameters of three-dimensional needled preforms for C/C-SiC composites, 2020, Journal of Materials Engineering, 5 citations.
  • 📖 The optimization of process parameters of three-dimensional needled composites based on ANN and GA, 2019, ICCM International Conferences on Composite Materials.

 

Julio Corredoira Vázquez | Design of Materials and Components | Best Researcher Award

Dr. Julio Corredoira Vázquez | Design of Materials and Components | Best Researcher Award

Doctorate at USC, Spain

Dr. Julio Corredoira Vázquez is a distinguished Postdoctoral Researcher at Universidade de Santiago de Compostela (USC), Spain. His research primarily focuses on lanthanoid ion coordination chemistry, single molecule magnets (SMMs), and luminescent thermometry. With a solid background in chemistry and extensive experience in both synthesis and characterization, Dr. Corredoira Vázquez is known for his contributions to the development of novel luminescent materials and magnetic systems.

 

Profile

Scopus Profile

ORCID Profile

Author Metrics

Dr. Corredoira Vázquez has published 19 papers in international peer-reviewed journals, with 15 in Q1 journals and 3 in the first decile according to JCR. His work has been cited 205 times, resulting in an h-index of 8. His research contributions are recognized for their impact in the fields of coordination chemistry and molecular magnetism.

Education

Dr. Corredoira Vázquez completed his Bachelor in Chemistry, Master in Chemistry, and PhD in Chemistry at Universidade de Santiago de Compostela (USC), Spain. He graduated in 2014, 2016, and 2022 respectively, with a European PhD mention and was honored with an Extraordinary PhD Award expected in 2024.

Research Focus

Dr. Corredoira Vázquez’s research focuses on the design and application of lanthanoid complexes, including their use as single molecule magnets (SMMs) and in luminescent thermometry. His work involves the synthesis and structural characterization of novel magnetic materials and the development of innovative methods for temperature sensing.

Professional Journey

Beginning his research career in 2016 as a PhD student, Dr. Corredoira Vázquez worked extensively on lanthanoid ion coordination chemistry. His doctoral research, conducted at USC and including a research stay at the University of Sussex under Prof. R. Layfield, led to significant publications. Since July 2022, he has held a Postdoctoral Researcher position at USC, where he is furthering his research in luminescent SMMs and has been involved in a research stay abroad under Prof. Luis D. Carlos.

Honors & Awards

Dr. Corredoira Vázquez has been recognized with the Extraordinary PhD Award, highlighting his exceptional contributions to the field. His research has been published in high-impact journals and has received substantial recognition within the scientific community.

 

Research Timeline

Dr. Corredoira Vázquez began his research career in 2016 with a focus on lanthanoid ion coordination chemistry. He completed his PhD in 2022 and received the Extraordinary PhD Award. He has been a Postdoctoral Researcher since 2022, with ongoing research in luminescent SMMs and an upcoming return to USC to continue his work.

Collaborations and Projects

Dr. Corredoira Vázquez has collaborated with prominent researchers on national and international projects. Notable collaborations include his involvement in the research project Materiales magnéticos y/o quiroópticos basados en moléculas imán y sistemas poliméricos metal-orgánicos (PGC2018-102052-B-C21), led by Enrique Colacio Rodríguez and Antonio Rodríguez Diéguez, which has advanced the field of molecular magnetism and related applications.

Publications

Strength for the Best Researcher Award

  1. Innovative Research Focus
    Dr. Julio Corredoira Vázquez’s research on lanthanoid ion coordination chemistry, single molecule magnets (SMMs), and luminescent thermometry is cutting-edge. His work in developing novel luminescent materials and magnetic systems is highly relevant and contributes significantly to the field.
  2. High-Impact Publications
    His papers have been published in prestigious journals such as Inorganic Chemistry Frontiers, Journal of Rare Earths, and Applied Organometallic Chemistry. These publications highlight his role in advancing knowledge in his research areas.
  3. Strong Citation Metrics
    With 205 citations and an h-index of 8, Dr. Corredoira Vázquez’s research is well-recognized and influential within the scientific community. These metrics underscore the impact of his work.
  4. Awards and Recognitions
    The Extraordinary PhD Award signifies his exceptional contributions and dedication to his research field. Such accolades enhance his credibility and reflect the high quality of his work.
  5. Collaborative Research
    His involvement in significant national and international research projects, including those with leading scientists, indicates his strong collaborative skills and integration into the global research community.

Areas for Improvement

  1. Broadening Research Topics
    While his focus on lanthanoid ions and SMMs is specialized, exploring additional related fields or interdisciplinary research could broaden his impact and open up new avenues for exploration.
  2. Increasing Research Output
    Publishing more papers, especially in higher impact journals, could further enhance his profile. Diversifying his publication venues could also increase visibility in different scientific communities.
  3. Expanding Collaborative Networks
    Building collaborations with researchers outside his current network could provide new perspectives and opportunities. Expanding international collaborations could further enhance his research scope and impact.
  4. Securing Funding
    Actively seeking and securing more research grants and funding opportunities could provide the resources needed for larger and more ambitious projects, enhancing the scope and depth of his research.
  5. Enhancing Public Engagement
    Increasing efforts to communicate research findings to a broader audience, including through popular science channels or public talks, could improve public understanding of his work and its relevance.

Conclusion

Dr. Julio Corredoira Vázquez is a distinguished researcher with a robust track record in lanthanoid ion coordination chemistry and luminescent thermometry. His innovative research, high-impact publications, and strong citation metrics reflect his significant contributions to the field. However, there are opportunities for further growth, including broadening his research topics, increasing his research output, expanding his collaborative networks, securing additional funding, and enhancing public engagement. Addressing these areas for improvement could further solidify his position as a leading scientist and enhance the impact of his work on a global scale.

Prof Dr. Baicheng Zhang | High-throughput manufacturing Award | Best Researcher Award

Prof Dr. Baicheng Zhang | High-throughput manufacturing Award

Prof Dr. Baicheng Zhang , University of Science and Technology Beijing , China

👨‍🏫 Dr. Baicheng Zhang, a distinguished scholar hailing from the People’s Republic of China, currently serves as a Full Professor at the University of Science and Technology Beijing, specializing in the Institute for Advanced Materials and Technology. With a robust academic background, including a PhD from Université de Technologie Belfort-Montbéliard in Mechanical Engineering and Design, Dr. Zhang has cultivated expertise in additive manufacturing, focusing on Selective Laser Melting and its atmospheric influences on alloy fabrication. His career spans significant roles such as Associate Professor at the same institution and pivotal research positions at Singapore Institute of Manufacturing Technology and Université de Technologie Belfort-Montbéliard. Dr. Zhang is esteemed in his field, evidenced by his editorial roles in prestigious journals like Material Today Communication and International Journal of Minerals, Metallurgy and Materials (IJMMM), where he contributes to advancing knowledge in engineering mechanics and materials science. His dedication to high-throughput manufacturing and material characterization underscores his commitment to innovation in the realm of advanced manufacturing technologies.

🌐 Professional Profile:

Scopus

Google scholar

Orcid

📚 Education:

  • PhD, Université de Technologie Belfort-Montbéliard, France (2009-2013)
    • Mechanical Engineering and Design
    • Thesis: Selective laser melting – Influence of the atmosphere and in-situ realization of alloy
  • PhD Candidature, Xi’an Jiaotong University, China (2008-2009)
    • Mechanical Engineering and Automation
    • Thesis: Rapid prototyping – sterelithography
  • Master Candidature, Xi’an Jiaotong University, China (2007-2008)
    • Software and Automation
  • Bachelor, Xi’an Jiaotong University, China (2003-2007)
    • Mechanical Engineering and Automation

👨‍💼 Work Experience:

  • Full Professor (from June 2024)
    • University of Science and Technology Beijing, Institute for Advanced Materials and Technology
  • Associate Professor (January 2018 – June 2024)
    • University of Science and Technology Beijing, Institute for Advanced Materials and Technology
  • Research Fellow (May 2014 – December 2017)
    • Singapore Institute of Manufacturing Technology (SIMTech), Joining/Forming Technology Group
  • Postdoctoral Fellow (April 2013 – May 2014)
    • Université de Technologie Belfort-Montbéliard, Mechanical Engineering and Design
    • Research: Selective laser melting

🔍 Research Direction:

  • Additive Manufacturing: High Throughput Manufacturing/Characterization; Material Development

🏆 Social Appointments/Awards:

  • Editorial Board Member: Material Today Communication; International Journal of Minerals, Metallurgy and Materials (IJMMM); Metal; Journal of Engineering Mechanics and Machinery, Clausius Scientific Press Inc.

Publication Top Notes:

Effects of processing parameters on microstructure and mechanical property of selective laser melted Ti6Al4V

Citation – 499

The study of the laser parameters and environment variables effect on mechanical properties of high compact parts elaborated by selective laser melting 316L powder

Citation – 448

Effects of processing parameters on properties of selective laser melting Mg–9% Al powder mixture

Citation -315

Study of selective laser melting (SLM) Inconel 718 part surface improvement by electrochemical polishing

Citation -248

Effect of different heat treatments on the microstructure and mechanical properties in selective laser melted INCONEL 718 alloy

Citation -186

 

 

 

 

Prof. QINGYOU LU | CONDENSE MATTER Award | Best Researcher Award

Prof. QINGYOU LU | CONDENSE MATTER Award | Best Researcher Award

Prof. QINGYOU LU ,University of Science and Technology of China , China

🌟 Qingyou Lu (陆轻铀), born on March 22, 1969, in Changchun, Jilin Province, is a distinguished physicist specializing in condensed matter physics. With a B.S. (with High Honors) and a Ph.D. from the University of Texas at Austin, his groundbreaking dissertation focused on magnetic force microscopy of colossal magneto-resistive materials and superconductors. Lu has held significant roles, including Senior Engineer at Cypress Semiconductor and Professor of Physics at the University of Science and Technology of China (USTC) and the High Magnetic Field Laboratory of CAS. His accolades include being Chief Scientist of the National Key R&D Program (2017-2022, 2023-2028), Chair Professor at USTC, and multiple awards for scientific achievements, highlighting his substantial contributions to the field of physics. 🌟

Profile :

Scopus

🎓 Education

  • B.S. in Physics (with High Honors): University of Texas at Austin (February 1993 – December 1995)
  • Ph.D. in Condensed Matter Physics (with University Fellowship): University of Texas at Austin (January 1996 – July 2000)
    • Ph.D. Dissertation Title: MAGNETIC FORCE MICROSCOPY OF COLOSSAL MAGNETO-RESISTIVE MATERIALS AND SUPERCONDUCTORS

💼 Work Experience

  • Senior Engineer, Staff Engineer, Project Leader: Cypress Semiconductor Inc., Bloomington, Minnesota, U.S.A. (September 2000 – April 2005)
  • Professor of Physics: University of Science and Technology of China, Hefei, Anhui, P.R. China (June 2005 – Present)
  • Professor of Physics (Double hire): High Magnetic Field Laboratory of the Chinese Academy of Sciences (CAS), Hefei, Anhui, P.R. China (May 2008 – Present)

🏆 Awards and Honors

  • 2023: Chief Scientist of National Key R&D Program (2023-2028 term)
  • 2022: Chair Professor of University of Science & Technology of China
  • 2021: Government Subsidies from Anhui Province
  • 2020: The Extra Prize for Science & Technology Achievement of Anhui Province
  • 2018: Associate Editor of Review of Scientific Instruments
  • 2017: Chief Scientist of National Key R&D Program (2017-2022 term)
  • 2017: Outstanding Science and Technology Achievement Prize of CAS
  • 2010: Winner of CAS Core Talents for Key Technologies
  • 2005: Winner of Education Ministry’s New Century Excellent Talents

 

Publications Top Notes 📄

Strain-driven charge-ordered state in La0.67Ca0.33MnO3

Citation -201

Observation of magnetic domain behavior in colossal magnetoresistive materials with a magnetic force microscope

Citation -97

Localized measurement of penetration depth for a high Tc superconductor single crystal using a magnetic force microscope

Citation -8

Low-temperature magnetic forcemicroscopy of colossal magnetoresistive films

Citation -9