Sahaya Dennish Babu | material | Best Researcher Award

Sahaya Dennish Babu | material | Best Researcher Award

Dr. Sahaya Dennish Babu , Chettinad College of Engineering & Technology, India.

Dr. G. Sahaya Dennish Babu is a passionate educator and researcher specializing in functional nanomaterials for optoelectronic devices. Currently serving as an Assistant Professor in the Department of Physics at Chettinad College of Engineering & Technology, Karur, he is dedicated to teaching core and applied physics while actively contributing to nanomaterial synthesis for optics, bio-sensing, and CO₂ conversion. With expertise in interdisciplinary research and material characterization, he collaborates on national and international projects to advance sustainable technologies. Beyond academia, he leads initiatives in industrialization, intellectual property, and student mentorship, fostering innovation and scientific progress. 🚀📡💡

Publication Profile

Scopus
Orcid
Google Scholar

Education & Experience 🎓🔬

Education
  • Ph.D. in Functional Nanomaterials for Optoelectronic Devices 🏆

  • M.Phil. in Physics 🎯

  • M.Sc. in Physics 📖

Experience
  • Assistant Professor, Department of Physics (2017 – Present) 🏫

    • Teaching Engineering Physics for multi-engineering branches.

    • Coordinator of IPR, Industrialization Centre for Applied Nanoscience (ICAN), and Enrichment Committee.

    • Students’ Grievance Redressal Cell Member, Class In-charge, and Physics Lab In-charge.

Summary Suitability

Dr. G. Sahaya Dennish Babu, M.Sc., M.Phil., Ph.D., is a distinguished researcher and educator specializing in Functional Nanomaterials for Optoelectronic Devices. His pioneering contributions in nanomaterials for energy applications, sustainable technologies, and advanced material synthesis make him a highly deserving candidate for the Best Researcher Award.

Professional Development  📚🔬✨

Dr. G. Sahaya Dennish Babu is deeply engaged in professional development, continuously enhancing his expertise in nanotechnology, sustainable materials, and physics education. He actively participates in national and international research collaborations, contributing to material synthesis and device fabrication for energy and bio-sensing applications. As an IPR Coordinator, he promotes intellectual property awareness, while his leadership in ICAN fosters industrial partnerships. His dedication to mentoring students, organizing workshops, and engaging in interdisciplinary research underscores his commitment to academic excellence and scientific innovation. Passionate about sustainability and technological advancements, he integrates problem-solving skills with hands-on experimentation. 🌍⚛️💡

Research Focus  🔬🌱🌍

Dr. G. Sahaya Dennish Babu’s research focuses on the design and synthesis of functional nanomaterials for applications in optoelectronics, energy conversion, and sustainable technologies. His expertise includes chalcogenides, perovskites, and nanostructures tailored for optics, bio-sensing, and CO₂ capture. He explores advanced nanomaterials for energy storage and conversion, aiming to develop eco-friendly solutions for global challenges. With a strong interdisciplinary approach, he collaborates on nanomaterial-driven innovations for healthcare, environmental monitoring, and green technologies. His work integrates material characterization, device fabrication, and applied physics, striving to create impactful solutions for a sustainable future. ⚡🌎🧪

Awards & Honors 🏆🎖️🌟

🏅 Best Researcher Award for contributions to nanomaterial synthesis and applications.
🏅 Outstanding Educator Award for excellence in teaching physics.
🏅 Innovation in Sustainable Technology Award for research in CO₂ conversion.
🏅 IPR Excellence Award for fostering intellectual property awareness.
🏅 Best Coordinator Award for leadership in student development initiatives.

Publication Top Notes

1️⃣ Morphology-optimized ZnSnO₃ nanopentagons as efficient electron transport layers for high-efficient perovskite solar cellsJournal of Solid State Chemistry (2025) 🔬☀️📄 | DOI: 10.1016/j.jssc.2025.125322

2️⃣ Microwave-assisted synthesis of Cu₂ZnSnS₄ and Cu₂Zn₀.₅Ni₀.₅SnS₄ nanoparticles for thin-film solar cellsJournal of Materials Science: Materials in Electronics (2024) 🔬⚡📄 | DOI: 10.1007/s10854-024-13956-9

3️⃣ Enhancement of MXene optical properties towards medical applications via metal oxide incorporationNanoscale (2023) 🏥🌱📄 | DOI: 10.1039/D3NR02527F

4️⃣ Highly flexible, green luminescent down-converting and hydrophobic 0-D cesium lead bromide (Cs₄PbBr₆)/poly (vinylidene difluoride) polymer nanocomposites for photonics and display applicationsInorganic Chemistry Communications (2023) 💡🎨📄

5️⃣ Magnetic Nanomaterials for Solar Energy Conversion ApplicationsNanostructured Magnetic Materials: Functionalization and Diverse Applications (2023) 🧲☀️📖

Feiyue Wu | Materials | Best Researcher Award

Feiyue Wu | Materials | Best Researcher Award

Dr. Feiyue Wu , Dalian University of Technology , China

🎓 Dr. Feiyue Wu is an Associate Professor at the School of Control Science and Engineering, Dalian University of Technology. He earned his Ph.D. in Control Theory and Control Engineering in 2021. His research specializes in the constrained control of switched systems and their applications in composite materials and structures. Dr. Wu has led five research projects, published 18 SCI/Scopus-indexed articles, and secured three national invention patents. His innovative methods contribute to optimizing the mechanical properties of composite materials. As an IEEE Member, Dr. Wu actively advances control science to enhance composite systems’ reliability and performance. 🌟🔬

Publication Profile

Scopus
Orcid
Google Scholar

Education and Experience 

  • 🎓 Ph.D. in Control Theory and Control Engineering (2021) – Dalian University of Technology, China.
  • 🧑‍🏫 Associate Professor – School of Control Science and Engineering, Dalian University of Technology.
  • 🛠️ Research Leader – Five projects, including a National Natural Science Foundation of China Youth Project.
  • 🤝 Industry Collaboration – Four projects focused on composite material performance optimization.

Suitability Summary

Dr. Feiyue Wu, an Associate Professor at the School of Control Science and Engineering, Dalian University of Technology, is a distinguished nominee for the Best Researcher Award. With a strong academic foundation and a Ph.D. in Control Theory and Control Engineering (2021) from the same institution, Dr. Wu has made remarkable contributions to the fields of constrained control of switched systems and control allocation.

Professional Development 

📈 Dr. Feiyue Wu’s innovative research bridges control science and composite materials. His work addresses critical challenges in optimizing material performance by introducing constrained control methods for switched systems. These advancements enhance the stability, durability, and efficiency of composites under dynamic conditions. 🛠️ He has published 18 indexed journal articles, led five research projects, and secured three national invention patents related to control applications in composite materials. Dr. Wu’s active engagement as an IEEE Member and his collaborations with industry underline his commitment to driving technological progress in materials science and engineering. 🚀🔍

Research Focus 

🔬 Dr. Feiyue Wu’s research emphasizes control science applications in composite materials. By integrating constrained control methods with composite systems, he tackles challenges like dynamic load management, structural optimization, and material stability. His innovative use of semi-ellipsoidal invariant sets enables precise control, enhancing the mechanical properties of composites under various conditions. ⚙️ His work contributes to advancing sustainability and reliability in sectors utilizing composites, such as aerospace, automotive, and construction. With a focus on bridging theory and application, Dr. Wu is revolutionizing control methodologies to elevate composite material performance. 🤖🌿📘

Awards and Honors 

  • 🏆 Three National Invention Patents – Recognized for innovations in control science and composite materials.
  • 📜 18 SCI/Scopus-Indexed Publications – High-impact contributions to control systems in material science.
  • National Natural Science Foundation of China Youth Project – Prestigious research funding leader.
  • 🤝 Active IEEE Member – Advancing control science in composite systems.

 

Publications Top Notes

  • A Cross-Layer Game-Theoretic Approach to Resilient Control of Networked Switched Systems Against DoS Attacks
  • Self-Triggered Model Predictive Control for Switched Systems with Dwell Time Constraints
  • Prescribed Performance Bumpless Transfer Control for Switched Large-Scale Nonlinear Systems
  • Graph-Based Restricted and Arbitrary Switching for Switched Positive Systems via a Weak CLCLF
  • A Stackelberg Game Approach to the Stability of Networked Switched Systems Under DoS Attacks
  • Truncated Predictor Feedback Control for Switched Linear Systems Subject to Input Delay and Saturation
  • Multi-Rate Sampled-Data Control of Switched Affine Systems

 

 

Mohamed Maher | Material Science | Impactful Research Award

Mohamed Maher | Material Science | Impactful Research Award

Dr. Mohamed Maher, University of Texas Southwestern Medical Center, United States.

Publication profile

Scopus

Education and Experience

Education 🎓
  • Ph.D. in Cancer Biology (Molecular Virology and Immunology) – National Cancer Institute, Cairo University, Egypt (2011–2017)
  • M.Sc. in Pharmaceutical Sciences (Microbiology and Immunology) – Assiut University, Egypt (2006–2010)
  • B.Sc. in Pharmaceutical Sciences – Assiut University, Egypt (1998–2003)
Experience 💼
  • Senior Research Assistant – MD Anderson Cancer Center, Houston, TX (2022–Present)
  • Postdoctoral Fellow – MD Anderson Cancer Center, Houston, TX (2019–2022)
  • Lecturer of Cancer Biology, Virology, and Immunology – South Egypt Cancer Institute, Assiut University, Egypt (2017–Present)
  • Assistant Lecturer – South Egypt Cancer Institute, Assiut University, Egypt (2015–2017)

Suitability For The Award

Dr. Mohamed Maher stands as a distinguished cancer researcher whose transformative contributions to molecular diagnostics and cancer genomics make him an ideal candidate for the prestigious Impactful Research Award. His innovative work in cancer genotyping, particularly in liquid biopsies, solid tumors, and hematological malignancies, underscores his dedication to advancing diagnostic precision and improving patient outcomes. Dr. Maher’s expertise, blending his background as a Clinical Pharmacist, Cancer Biologist, and Molecular Diagnostic innovator, highlights his remarkable ability to translate cutting-edge research into real-world clinical applications, creating a lasting impact in cancer research and diagnostics.

Professional Development 

Publications Top Notes

  • “A rapid turnaround time workflow for a cytological liquid biopsy assay using FNA supernatant specimens” (Maher, M.H., et al., 2025, Cancer Cytopathology) – 📅 2025 | 🔗 Open Access | ✨ 
  • “Dinutuximab synergistically enhances the cytotoxicity of natural killer cells to retinoblastoma through the perforin-granzyme B pathway” (Wang, H., et al., 2020, OncoTargets and Therapy) – 📅 2020 | 🔗 8 Citations