Yingju Li | superalloys | Best Researcher Award

Yingju Li | superalloys | Best Researcher Award

Prof. Yingju Li , Institute of Metal Research, Chinese Academy of Sciences , China.

Yingju Li is a Researcher Fellow at the Institute of Metal Research, Chinese Academy of Sciences. He has made groundbreaking contributions to developing high-temperature alloys with exceptional glass corrosion resistance, improving corrosion resistance by 70%. Yingju has published over 70 papers and holds more than 50 patents. He has been recognized with prestigious awards for scientific and technological progress in China’s nonferrous metal industry and Shandong province. His work in material design, corrosion resistance, and superalloys continues to have a significant impact in the field. 🏅📚🔬

Publication Profile

Scopus

Education and Experience

  • Ph.D., Institute of Metal Research, Chinese Academy of Sciences 🎓
  • Researcher Fellow, Institute of Metal Research, Chinese Academy of Sciences 🔬
  • Contributor to National Key Research and Development Programs 🏆

Suitability Summary

Prof.Yingju Li, Ph.D., a Researcher Fellow at the Institute of Metal Research, Chinese Academy of Sciences, is a deserving candidate for the Best Researcher Award due to his outstanding contributions to material science, particularly in the development of high-temperature alloys and corrosion-resistant materials. His innovative research has not only advanced scientific knowledge but has also had significant industrial impact, particularly in fields such as aerospace and manufacturing.

Professional Development

Yingju Li has continuously advanced his professional development through collaboration with leading academic and research institutions like Xiamen University. He has been integral in designing and preparing advanced Co-based superalloys, significantly enhancing corrosion resistance and mechanical properties. His groundbreaking work in electromagnetic field-controlled solidification and material design has contributed to the development of novel alloys. Additionally, his continuous involvement in national and international research projects has enabled him to mentor and guide the future generation of researchers. He is an active member of the Electromagnetic Metallurgy Branch of the China Metal Society, further boosting his professional network. 🌟🤝📈

Research Focus 

Yingju Li’s research primarily focuses on the development of corrosion-resistant superalloys, material design, and solidification technologies. His work addresses key challenges in the preparation and improvement of alloys, such as overcoming issues with high density and poor thermal stability. He has innovated techniques like multi-element microalloying to strengthen magnesium alloys and has developed high-strength magnesium alloys that are recognized internationally. His research also emphasizes electromagnetic field-controlled solidification to improve material quality and casting precision, particularly in large complex thin-walled components. His contributions continue to shape advancements in materials science, benefiting both academia and industry. ⚙️🔧🧪

Awards and Honors

  • First Prize for Scientific and Technological Progress in China Nonferrous Metal Industry 🏅
  • Second Prize for Scientific and Technological Progress in China Nonferrous Metal Industry 🥈
  • Second Prize for Scientific and Technological Progress in Shandong Province 🥈
  • 56 Patents Published 📜
  • Over 70 Papers Published in International Journals 📚

Publication Top Notes

Effect of trace Al and Ti elements on borosilicate glass corrosion resistance of Inconel 690 alloy. Journal of Nuclear Materials, 606, 155626. 📄

Microstructure evolution and dynamic recrystallization mechanisms of Mg-Al-Ca-Zn-Sn-Mn alloys with different Ca contents during hot extrusion. Journal of Alloys and Compounds, 1011, 178400. 🔧

Erratum to “Thermal corrosion behavior of Inconel 693, Hastelloy N, and 310S in ceramic waste forming reactions”. Journal of Nuclear Materials, 604, 155468. 🔄

Thermal corrosion behavior of Inconel 693, Hastelloy N, and 310S in ceramic waste forming reactions. Journal of Nuclear Materials, 603, 155416. ⚙️

Finite Element Analysis of Dry Friction Wear of Al-based Composite Coatings. Cailiao Yanjiu Xuebao/Chinese Journal of Materials Research, 38(12), pp. 941–949. 🔍

Three-dimensional modeling of electromagnetic field and fluid flow during solidification of an aluminum alloy in a pulsed magnetic field. Materialwissenschaft und Werkstofftechnik, 55(12), pp. 1732–1742. 🧲

 

 

 

Shilpi Jaiswal | Material science | Best Researcher Award

Dr. Shilpi Jaiswal | Material science | Best Researcher Award

Research scholar at IISER Bhopal, India

Dr. Shilpi Jaiswal is a highly accomplished researcher with a focus on nanotechnology and photocatalysis, currently pursuing postdoctoral research at IISER Bhopal and collaborating with renowned institutions like ENS Paris Saclay. She holds a Ph.D. from IISER Bhopal, where her work on engineering lanthanide-based nanocomposites contributed to advancements in visible to NIR emission and photocatalysis. Her expertise includes fabricating advanced nanomaterials, with proficiency in techniques such as NMR, PXRD, XPS, FTIR, and electrochemical measurements. Dr. Jaiswal has published extensively in prestigious journals, including Angewandte Chemie, J. Mater. Chem. C, and ACS Applied Nano Materials, with several research articles highlighted in major media outlets like The Hindu and ANI News. She has received multiple accolades, including best poster presentation awards, and has delivered talks at international conferences. Additionally, her teaching experience includes roles as a teaching assistant in various chemistry courses at IISER Bhopal.

Professional Profile 

Education

Dr. Shilpi Jaiswal has an impressive academic background, beginning with her Bachelor of Science (B.Sc.) from Deen Dayal Upadhyaya Gorakhpur University, India, where she graduated with first-class honors. She pursued her Master of Science (M.S.) at the Indian Institute of Science Education and Research (IISER) Bhopal, securing an outstanding course work performance with a CPI of 9.03/10.0. She further advanced her education by earning a Ph.D. in Chemistry from IISER Bhopal, where she specialized in the engineering of lanthanide-based nanocomposites for applications in visible to near-infrared emission and photocatalysis. During her Ph.D., she worked at the FML Laboratory, gaining extensive experience in nanotechnology and material science. In addition to her academic qualifications, Dr. Jaiswal has also participated in various research programs and collaborative projects, strengthening her expertise in advanced materials and nanomaterials, solidifying her reputation as a promising researcher in the field of chemistry and materials science.

Professional Experience

Dr. Shilpi Jaiswal has a diverse and rich professional experience, beginning with her postdoctoral research at the FML Laboratory, Department of Chemistry, IISER Bhopal, where she worked on long-lived mechanoluminescent molecules and their applications in information encryption and photocatalysis. Additionally, she collaborated with Dr. Rémi Métivier at PPSM, ENS Paris-Saclay, further enhancing her research expertise. Her doctoral research at IISER Bhopal involved engineering lanthanide-based nanocomposites, focusing on visible to near-infrared emission and photocatalysis, which contributed to several high-impact publications. Dr. Jaiswal also contributed to the development of upconversion hybrid nanoparticles for biogenic amine detection during her Master’s project. Furthermore, she has honed her skills in a variety of laboratory techniques such as NMR, XPS, HRTEM, FTIR, and electrochemical measurements. With her postdoctoral fellowships and extensive research background, Dr. Jaiswal has established herself as a skilled researcher and expert in material chemistry and nanotechnology.

Research Interest

Dr. Shilpi Jaiswal’s research interests lie at the intersection of nanotechnology, material chemistry, and photochemistry. Her primary focus is on the design and development of advanced nanomaterials, particularly lanthanide-based nanocomposites, with applications in visible to near-infrared emission and photocatalysis. She investigates the use of these nanocomposites for energy-efficient processes, including photocatalytic reactions and information encryption. Another key area of her work is upconversion luminescence, where she explores hybrid nanomaterials for enhanced performance in applications such as biogenic amine detection and photocatalysis. Dr. Jaiswal has also worked on the synthesis and functionalization of inorganic-organic hybrid materials, including porous organic polymers and metal nanoparticles, for applications in sensing, imaging, and catalysis. Her research aims to create multifunctional probes for intracellular sensing and imaging, advancing both the fundamental understanding of nanomaterials and their real-world applications in environmental and biomedical fields.

Award and Honor

Dr. Shilpi Jaiswal has received several prestigious awards and honors throughout her academic and research career, reflecting her exceptional contributions to the field of chemistry and materials science. She has qualified the Joint Admission Test for M.Sc. (JAM 2016), securing admission to top institutions. Additionally, Dr. Jaiswal has excelled in the National Eligibility Test for CSIR-LS and CSIR-JRF, with All India Ranks 38 and 85, respectively. Her academic excellence led to her selection for a dual M.Sc.-Ph.D. program at IIT Bombay in Energy Science and Engineering. Dr. Jaiswal has also earned recognition for her research, winning Best Poster Presentation prizes at renowned conferences, including the 9th Interdisciplinary Symposium on Materials Chemistry (ISMC 2022) and the RACMS-2021 seminar. Furthermore, her work has been highlighted in major media outlets, including The Hindustan Times and Times of India, showcasing her impactful contributions to the scientific community.

Conclusion

Shilpi Jaiswal is highly deserving of the Best Researcher Award due to her exceptional academic achievements, innovative contributions to materials science, and impactful publications. Her ability to collaborate internationally and her recognition through awards and publications highlight her as a leading researcher in her field. With continued development in leadership and broader scientific outreach, she has the potential to make even more significant contributions to the scientific community.

Publications Top Noted

  • Progress and perspectives: fluorescent to long-lived emissive multifunctional probes for intracellular sensing and imaging
    • Authors: S. Jaiswal, S. Das, S. Kundu, I. Rawal, P. Anand, A. Patra
    • Journal: Journal of Materials Chemistry C
    • Year: 2022
    • Citations: 31
  • Boosting Photocatalytic Nitrogen Fixation via Nanoarchitectonics Using Oxygen Vacancy Regulation in W-Doped Bi2MoO6 Nanosheets
    • Authors: M. Sharma, A. Kumar, D. Gill, S. Jaiswal, A. Patra, S. Bhattacharya, …
    • Journal: ACS Applied Materials & Interfaces
    • Year: 2023
    • Citations: 27
  • Tailoring defects in SrTiO3 by one step nanoarchitectonics for realizing photocatalytic nitrogen fixation in pure water
    • Authors: A. Kumar, M. Sharma, S. Sheoran, S. Jaiswal, A. Patra, S. Bhattacharya, …
    • Journal: Nanoscale
    • Year: 2023
    • Citations: 21
  • A hybrid upconversion nanoprobe for ratiometric detection of aliphatic biogenic amines in aqueous medium
    • Authors: S. Jaiswal, S. Kundu, S. Bandyopadhyay, A. Patra
    • Journal: Nanoscale Advances
    • Year: 2021
    • Citations: 17
  • UV-to-NIR Harvesting Conjugated Porous Polymer Nanocomposite: Upconversion and Plasmon Expedited Thioether Photooxidation
    • Authors: S. Jaiswal, A. Giri, D. Mandal, M. Sarkar, A. Patra
    • Journal: Angewandte Chemie
    • Year: 2023
    • Citations: 10
  • Molecular to supramolecular self-assembled luminogens for tracking the intracellular organelle dynamics
    • Authors: S. Kundu, S. Das, S. Jaiswal, A. Patra
    • Journal: ACS Applied Bio Materials
    • Year: 2022
    • Citations: 10
  • One-Pot Phosphine-Free Route for Single-Component White Light Emitting CdSexSy Alloy Nanocrystals
    • Authors: S. Jaiswal, J. Pathak, S. Kundu, A. Patra
    • Journal: ACS Sustainable Chemistry & Engineering
    • Year: 2021
    • Citations: 5
  • Imidazolium and Pyridinium-Based Ionic Porous Organic Polymers: Advances in Transformative Solutions for Oxoanion Sequestration and Non-Redox CO2 Fixation
    • Authors: A. Sahoo, S. Jaiswal, S. Das, A. Patra
    • Journal: ChemPlusChem
    • Year: 2024
    • Citations: N/A (new publication)
  • Rapid Conversion of CO2 Using Propargylic Amines by a Silver Nanoparticle-Loaded Triazole-Based Porous Organic Polymer
    • Authors: A. Sahoo, A. Giri, MDW Hussain, S. Jaiswal, A. Patra
    • Journal: ACS Applied Nano Materials
    • Year: 2024
    • Citations: N/A (new publication)