Savidh Khan | Materials Science | Best Researcher Award

Savidh Khan | Materials Science | Best Researcher Award

Dr. Savidh Khan | Thapar Institute of Engineering & Technology | India

Dr. Savidh Khan is a distinguished physicist and materials scientist currently serving as an Assistant Professor in the Department of Physics at RIMT University, Mandi Gobindgarh, Punjab, India. His academic and research journey reflects a deep commitment to advancing knowledge in materials science and applied physics, with a particular focus on the synthesis, characterization, and application of advanced functional materials. He earned his Ph.D. in Physics and Materials Science from Thapar Institute of Engineering and Technology, where his research centered on undoped and doped vanadium oxides for solid oxide fuel cell applications under the supervision of Professor Kulvir Singh. His earlier academic achievements include an M.Tech. in Metallurgical and Materials Engineering from Thapar University, an M.Phil. and M.Sc. in Physics, and a B.Sc. in Physics, Chemistry, and Mathematics from C.C.S. University, Meerut, India. Over the years, Dr. Khan has developed expertise in experimental materials science, particularly in preparing glasses and ceramics using melt-quench and solid-state reaction techniques. He is highly skilled in utilizing a range of advanced characterization tools such as X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), Raman spectroscopy, scanning electron microscopy (SEM), UV-visible spectroscopy, thermogravimetric and differential thermal analysis (TG/DTA), and impedance spectroscopy to investigate material structure, stability, and performance. His research spans several critical areas, including solid oxide fuel cells, lithium-ion batteries, radiation dosimeters, upconversion materials, bioceramics, and glass-ceramics for biomedical and energy applications, with a strong focus on improving material functionality and sustainability. Dr. Khan’s teaching experience is equally impressive, having served at reputed institutions including Thapar Institute of Engineering and Technology, S.I.T.E. Meerut, Meerut College, and D.N. College, where he has effectively combined his research expertise with classroom teaching to inspire and mentor students. He has successfully supervised one Ph.D. scholar and continues to guide four ongoing doctoral candidates in cutting-edge materials research. His outstanding academic contributions have been recognized through several prestigious awards and fellowships, including the GATE Fellowship from the Ministry of Human Resource Development (MHRD), Government of India, and the Direct-SRF fellowship from the Council of Scientific and Industrial Research (CSIR), New Delhi. He also received the Best Poster Award at the Conference on Microscopy in Materials Science for his innovative research presentation. With numerous publications, a growing citation record, and a solid h-index, Dr. Savidh Khan continues to make significant contributions to the fields of materials science and applied physics, advancing technologies that address challenges in energy storage, biomedical applications, and sustainable materials development.

Profile: Scopus | Orcid | GoogleScholar | Researchgate 

Featured Publications 

Khan, S., Kaur, G., & Singh, K. (2017). Effect of ZrO₂ on dielectric, optical and structural properties of yttrium calcium borosilicate glasses. Ceramics International, 43(1), 722–727.

Khan, S., & Singh, K. (2019). Effect of MgO on structural, thermal and conducting properties of V₂₋ₓMgₓO₅₋δ (x = 0.05–0.30) systems. Ceramics International, 45(1), 695–701.

Kaur, A., Khan, S., Kumar, D., Bhatia, V., Rao, S. M., Kaur, N., Singh, K., Kumar, A., … (2020). Effect of MnO on structural, optical and thermoluminescence properties of lithium borosilicate glasses. Journal of Luminescence, 219, 116872.

Khan, S., & Singh, K. (2020). Structural, optical, thermal and conducting properties of V₂₋ₓLiₓO₅₋δ (0.15 ≤ x ≤ 0.30) systems. Scientific Reports, 10(1), 1089.

Jaidka, S., Khan, S., & Singh, K. (2018). Na₂O doped CeO₂ and their structural, optical, conducting and dielectric properties. Physica B: Condensed Matter, 550, 189–198.

Weijie Zhang | Design of Materials | Best Researcher Award

Weijie Zhang | Design of Materials | Best Researcher Award

Dr. Weijie Zhang Lecturer at Chongqing University of Technology | China

Dr. Weijie Zhang is a Lecturer at the School of Science, Chongqing University of Technology, China. He is dedicated to teaching and research in materials science, with a particular emphasis on advanced energy storage technologies such as supercapacitors and emerging battery systems.

Academic Background

Dr. Zhang completed his doctoral studies at Southeast University, China, where his research focused on the application of metal–organic frameworks (MOFs) and their derivatives for supercapacitors. His work contributed to the deeper understanding of how these materials can enhance the efficiency and stability of electrochemical devices. He began his academic journey at Chongqing University of Technology, where he obtained his undergraduate degree in physics. During this period, he developed a strong foundation in material sciences and demonstrated early excellence through both academic and research achievements.

Research Focus

Dr. Zhang’s research primarily revolves around the development of energy storage materials and devices. His work includes the exploration of graphene composites, MOFs, and related derivatives to improve the performance of supercapacitors, sodium-ion batteries, and zinc-ion batteries. In addition to experimental studies, he is actively engaged in first-principles computational methods, employing simulation tools such as VASP and Materials Studio to complement experimental results. This combination of theory and practice ensures that his research outcomes are scientifically robust and technologically innovative.

Work Experience

As a Lecturer at Chongqing University of Technology, Dr. Zhang is actively involved in teaching, supervising research projects, and mentoring students in physics and materials science. Prior to this position, he pursued extensive doctoral research at Southeast University, where he worked on energy storage materials and developed innovative approaches for the application of MOFs and graphene composites in supercapacitor devices. His professional journey reflects a strong balance of research, teaching, and mentorship.

Key Contributions

Dr. Zhang has made valuable contributions to the advancement of high-performance energy storage devices. His research has focused on enhancing the energy density, durability, and stability of supercapacitors and batteries. By integrating computational modeling with laboratory experiments, he has provided new insights into the design and optimization of electrode materials. His work continues to support the development of sustainable and efficient energy storage solutions.

Awards & Recognition

Dr. Zhang has received several awards and honors in recognition of his academic excellence and research contributions. He has been acknowledged with national and institutional scholarships and recognized as an outstanding graduate at multiple stages of his academic career. These achievements highlight his dedication, consistent performance, and impact in the field of energy materials.

Professional Roles & Memberships

Dr. Zhang is an active participant in academic communities and has presented his research at leading conferences on energy storage and electrochemical systems. His engagement in these forums underscores his commitment to scientific collaboration, knowledge exchange, and the dissemination of innovative research outcomes.

Profile Links: Scopus | Orcid | Researhgate 

Featured Publications 

Zhang, W. J., et al. (2024). In situ growth of binder-free CoNi₀.₅-MOF/CC electrode for high-performance flexible solid-state supercapacitor application. Nanoscale, 19, 9516–9524.

Zhang, W. J., et al. (2024). C₃N₄ template-based N-doped porous carbon cathode for zinc-ion hybrid capacitors. ACS Applied Nano Materials, 7, 24778–24787.

Zhang, W. J., et al. (2018). N/S co-doped three-dimensional graphene hydrogel for high-performance supercapacitor. Electrochimica Acta, 278, 51–60.

Zhang, W. J., et al. (2021). High-performance Bi₂O₂CO₃/rGO electrode material for asymmetric solid-state supercapacitor application. Journal of Alloys and Compounds, 855, Article 157094.

Zhang, W. J., et al. (2021). Graphene–carbon nanotube@cobalt derivatives from ZIF-67 for all-solid-state asymmetric supercapacitor. Applied Surface Science, 568, 150929.

Impact Statement

Dr. Zhang envisions contributing to the global advancement of sustainable energy technologies through research in high-performance, environmentally friendly energy storage systems. His approach combines experimental innovation with computational simulations, enabling the predictive design of functional materials and devices. Through his work, he aims to foster scientific progress while supporting the transition toward cleaner energy solutions for society and industry.

Shujiang Liu | Glass Materials | Best Researcher Award

Shujiang Liu | Glass Materials | Best Researcher Award

Prof. Shujiang Liu | Qilu University of Technology | China

Shujiang Liu, Ph.D., is a Professor at the School of Materials Science and Engineering, Qilu University of Technology, with over two decades of dedicated experience in the teaching and research of glass materials. His scholarly expertise spans across high-strength glasses, transparent glass-ceramics, and optical glasses, making significant contributions to both the academic community and industrial applications of advanced glass science. Over the years, Professor Liu has actively engaged in professional service, holding key roles such as member of the Glass Branch of the Chinese Ceramics Society, Chairman of the Shandong Glass Standards Committee, and member of the Expert Committee of the China Household Glass Association. He has authored more than 75 peer-reviewed publications in internationally recognized journals, which have been cited 916 times by 814 documents, with an h-index of 15. His research contributions provide original insights into glass crystallization, sintering behavior, phase separation, and novel glass-ceramic applications, while he also serves as a reviewer for leading journals including the Journal of Non-Crystalline Solids, Ceramics International, and the Journal of the American Ceramic Society. His recent research highlights include studies on the influence of trace elements such as NiO on soda-lime-silicate and aluminosilicate glasses, the mixed-alkali effect in borate glass systems, and the role of phase separation in self-limited crystallization and crack growth resistance in phosphosilicate glasses. His team has also advanced knowledge on glass powders’ sintering behavior, early densification effects on glass–calcium carbonate mixtures, and the development of glass-ceramics as high-performance lithium-ion battery anode materials. With a consistent record of collaborative research and impactful publications from 2020 to 2025, Professor Liu continues to push the boundaries of glass science while fostering innovation in materials engineering. His work bridges fundamental research and applied technology, strengthening China’s position in glass science and standardization efforts worldwide.

Profile: Scopus | Researchgate

Featured Publications 

  • Jiang, X., Liu, S., Shan, Z., Lan, S., & Shen, J. (2020). Influence of traces of NiO on crystallization of soda-lime-silicate glass. Journal of the European Ceramic Society, 40(15), 6014–6022.

  • Liu, S., Tang, W., Ma, J., Zhang, Y., & Yue, Y. (2020). Li₂TiSiO₅ glass-ceramic as anode materials for high performance lithium ion batteries. ACS Applied Energy Materials, 3(10), 9760–9768.

  • Shan, Z., Zhang, Y., Liu, S., Tao, H., & Yue, Y. (2020). Mixed-alkali effect on hardness and indentation-loading behavior of a borate glass system. Journal of Non-Crystalline Solids, 548, 120314.

  • Zhou, Y., Zhang, J., Chen, Y., & Liu, S. (2021). On the isothermal sintering behavior and transparency of glass powders. Journal of Non-Crystalline Solids, 571, 121024.

  • Chen, Y., Liu, S., Zhou, Y., Shang, P., Shan, Z., & Zhang, J. (2022). Effect of Al₂O₃ content on amorphous phase-separation and self-limited crystallization of phosphosilicate glasses. Journal of Non-Crystalline Solids, 584, 121505.

  • Shang, P., Liu, S., Zhao, F., & Yi, Z. (2023). Effect of early densification on foaming process of glass–calcium carbonate mixture. Powder Technology, 424, 118560.

  • Zhao, F., Liu, S., Shang, P., Shan, Z., Lu, Q., Zhang, J., Su, Y., & Yi, K. (2023). Transparent glaze containing high-alumina glass frit: Batch-to-melt conversion. Journal of Non-Crystalline Solids, 617, 122496.

  • Li, H., Liu, S., Chen, Y., Shang, P., & Shan, Z. (2023). Effect of phase separation of a phosphosilicate glass on self-limited crystallization and slow crack growth. Physics and Chemistry of Glasses: European Journal of Glass Science and Technology Part B, 64(3), 110–119.

Wenqing Wang | Design of Materials | Best Researcher Award

Wenqing Wang | Design of Materials | Best Researcher Award

Prof. Dr. Wenqing Wang | Anhui Normal University | Best Researcher Award

Dr. Wenqing Wang is a prominent researcher in the field of chemistry, currently working at the College of Chemistry and Material Science, Anhui Normal University, Wuhu, Anhui, China. Born on February 19, 1987, she has dedicated her career to advancing the design, synthesis, and characterization of novel organometallic complexes and radicals. Dr. Wang completed her Bachelor of Science in Chemistry at Hebei Normal University in 2013 and went on to earn her Ph.D. in Chemistry from Nanjing University in 2018 under the supervision of Professor Xinping Wang, with her doctoral thesis titled “Syntheses and Properties of Chromium Radicals and Tetraazacyclophane Diradicals.” Her research focuses on organometallic complex studies, including the development of innovative radicals, the activation of small organic molecules, and the exploration of new chemical bond transformations. Since 2018, she has been contributing to both research and education at Anhui Normal University, mentoring students while actively engaging in cutting-edge chemical research. Dr. Wang’s scientific impact is reflected in her 22 publications, 317 citations across 277 documents, and an h-index of 11, highlighting her growing influence in the field. Her work bridges fundamental chemistry with practical applications, emphasizing the potential of radical-based systems in chemical synthesis and materials development. Recognized for her meticulous approach and innovative methodologies, she continues to advance the understanding of organometallic systems and radical chemistry, making significant contributions to both theoretical insights and practical applications. Dr. Wang remains committed to fostering international collaborations, guiding emerging chemists, and expanding the frontiers of chemical research with a focus on novel radicals and organometallic compounds.

Profile: Scopus | Orcid 

Featured Publications 

Wang, W., Sun, P., Liu, X., Zhang, X., Zhang, L., Tan, Y.-z., & Wang, X. (2024). Radical cations of bilayer nanographenes. Organic Letters.

Wang, W., Li, S., Wang, Q., Ding, X., Fang, Y., Ruan, H., Zhao, Y., & Wang, X. (2022). S = 1/2 tetracene monoradical cation/anion: Ion-based one-dimensional antiferromagnetic chains. Chemical Communications.

Wang, W., Wang, Q., Ding, X., Liu, X., Sun, P., & Wang, X. (2022). Synthesis and chemical redox studies of half-sandwich chromium carbonyl azobenzenes. Organometallics.

Yang, W., Wang, W., Zhang, L., Zhang, L., Ruan, H., Feng, Z., Fang, Y., & Wang, X. (2021). Persistent 2c–3e σ-bonded heteronuclear radical cations centered on S/Se and P/As atoms. Chemical Communications.

Wang, W. (2020). Stable, yet “naked”, azo radical anion ArNNAr(-) and dianion ArNNAr(2-) (Ar = 4-CN-2,6-(i)Pr2-C6H2) with selective CO2 activation. Chemical Communications.

Wang, W. (2018). An isolable diphosphene radical cation stabilized by three-center three-electron π-bonding with chromium: End-on versus side-on coordination. Angewandte Chemie International Edition.

Wang, W. (2018). S = 1 tetraazacyclophane diradical dication with robust stability: A case of low-temperature one-dimensional antiferromagnetic chain. Journal of the American Chemical Society.

Wang, W. (2017). Air-stable diradical dications with ferromagnetic interaction exceeding the thermal energy at room temperature: From a monomer to a dimer. Science China Chemistry.

Yassin Fouad | Damage Mechanisms | Best Researcher Award

Yassin Fouad | Damage Mechanisms | Best Researcher Award

Mr. Yassin Yahia Abdelrahman Fouad, University of KFUPM, Saudi Arabia.

Publication profile

Googlescholar

Education & Experience:

  • 🎓 B.Sc. in Mechanical Engineering (Honors) – University of Khartoum (2021)
    • GPA: 8.69/10.00 | First-Class Honors
    • Graduation Project: Mechanical Properties of 3D-Printed Parts
  • 🎓 M.Sc. in Mechanical Engineering – King Fahd University of Petroleum & Minerals (Expected 2024)
    • GPA: 3.75/4.00
    • Thesis: Tribological Characteristics of Kevlar-Epoxy-Zirconia Composite
  • 🛠️ Trainee Mechanical Design Engineer – Lambda Engineering (2018)
    • Designed parts using SolidWorks
  • 📚 Teaching Assistant – University of Khartoum (2022)
    • Teaching Mechanics of Materials & Machine Design

Suitability for Best Researcher Award

Yassin Yahia Abdelrahman Fouad is an aspiring mechanical engineer with a strong focus on composite materials, mechanics of materials, and damage mechanisms, making him a promising candidate for the Best Researcher Award. His academic background, coupled with significant research achievements, showcases his potential and dedication to advancing knowledge in his field.

Professional Development (💼🔬)

Yassin is committed to advancing his knowledge and technical skills in mechanical engineering 💡. He holds various certifications, including the Dassault Systèmes Associate Mechanical Design Certificate and specialized coursework from prestigious institutions like Georgia Tech and HKUST 🌟. His participation in SolidWorks User Groups demonstrates his ongoing dedication to mastering 3D design tools, and he actively engages in continuous learning through both academic and professional settings 📈. His involvement in engineering project management and machine design courses reflects his holistic approach to engineering excellence 🔧.

Research Focus 🧫🧬

Awards and Honors (🏆🎖️)

  • Graduated with First-Class Honors from the University of Khartoum. 🎓
  • A+ for the graduation project on 3D printed part orientation. 🏆
  • Published papers in esteemed journals, contributing to advancing mechanical engineering. 📄
  • Accepted for oral presentation at the 9th International Conference on Materials Technology and Applications (ICMTA 2024)🌍
Publication Top Notes

Conclusion

Yassin Yahia Abdelrahman Fouad’s excellent academic record, impactful research in the field of composite materials, and active participation in the academic community position him as a strong candidate for the Best Researcher Award. His innovative work on Kevlar-Epoxy-Zirconia composites and his contributions to the broader engineering community highlight his commitment to advancing material science and mechanics.

Julio Corredoira Vázquez | Design of Materials and Components | Best Researcher Award

Dr. Julio Corredoira Vázquez | Design of Materials and Components | Best Researcher Award

Doctorate at USC, Spain

Dr. Julio Corredoira Vázquez is a distinguished Postdoctoral Researcher at Universidade de Santiago de Compostela (USC), Spain. His research primarily focuses on lanthanoid ion coordination chemistry, single molecule magnets (SMMs), and luminescent thermometry. With a solid background in chemistry and extensive experience in both synthesis and characterization, Dr. Corredoira Vázquez is known for his contributions to the development of novel luminescent materials and magnetic systems.

 

Profile

Scopus Profile

ORCID Profile

Author Metrics

Dr. Corredoira Vázquez has published 19 papers in international peer-reviewed journals, with 15 in Q1 journals and 3 in the first decile according to JCR. His work has been cited 205 times, resulting in an h-index of 8. His research contributions are recognized for their impact in the fields of coordination chemistry and molecular magnetism.

Education

Dr. Corredoira Vázquez completed his Bachelor in Chemistry, Master in Chemistry, and PhD in Chemistry at Universidade de Santiago de Compostela (USC), Spain. He graduated in 2014, 2016, and 2022 respectively, with a European PhD mention and was honored with an Extraordinary PhD Award expected in 2024.

Research Focus

Dr. Corredoira Vázquez’s research focuses on the design and application of lanthanoid complexes, including their use as single molecule magnets (SMMs) and in luminescent thermometry. His work involves the synthesis and structural characterization of novel magnetic materials and the development of innovative methods for temperature sensing.

Professional Journey

Beginning his research career in 2016 as a PhD student, Dr. Corredoira Vázquez worked extensively on lanthanoid ion coordination chemistry. His doctoral research, conducted at USC and including a research stay at the University of Sussex under Prof. R. Layfield, led to significant publications. Since July 2022, he has held a Postdoctoral Researcher position at USC, where he is furthering his research in luminescent SMMs and has been involved in a research stay abroad under Prof. Luis D. Carlos.

Honors & Awards

Dr. Corredoira Vázquez has been recognized with the Extraordinary PhD Award, highlighting his exceptional contributions to the field. His research has been published in high-impact journals and has received substantial recognition within the scientific community.

 

Research Timeline

Dr. Corredoira Vázquez began his research career in 2016 with a focus on lanthanoid ion coordination chemistry. He completed his PhD in 2022 and received the Extraordinary PhD Award. He has been a Postdoctoral Researcher since 2022, with ongoing research in luminescent SMMs and an upcoming return to USC to continue his work.

Collaborations and Projects

Dr. Corredoira Vázquez has collaborated with prominent researchers on national and international projects. Notable collaborations include his involvement in the research project Materiales magnéticos y/o quiroópticos basados en moléculas imán y sistemas poliméricos metal-orgánicos (PGC2018-102052-B-C21), led by Enrique Colacio Rodríguez and Antonio Rodríguez Diéguez, which has advanced the field of molecular magnetism and related applications.

Publications

Strength for the Best Researcher Award

  1. Innovative Research Focus
    Dr. Julio Corredoira Vázquez’s research on lanthanoid ion coordination chemistry, single molecule magnets (SMMs), and luminescent thermometry is cutting-edge. His work in developing novel luminescent materials and magnetic systems is highly relevant and contributes significantly to the field.
  2. High-Impact Publications
    His papers have been published in prestigious journals such as Inorganic Chemistry Frontiers, Journal of Rare Earths, and Applied Organometallic Chemistry. These publications highlight his role in advancing knowledge in his research areas.
  3. Strong Citation Metrics
    With 205 citations and an h-index of 8, Dr. Corredoira Vázquez’s research is well-recognized and influential within the scientific community. These metrics underscore the impact of his work.
  4. Awards and Recognitions
    The Extraordinary PhD Award signifies his exceptional contributions and dedication to his research field. Such accolades enhance his credibility and reflect the high quality of his work.
  5. Collaborative Research
    His involvement in significant national and international research projects, including those with leading scientists, indicates his strong collaborative skills and integration into the global research community.

Areas for Improvement

  1. Broadening Research Topics
    While his focus on lanthanoid ions and SMMs is specialized, exploring additional related fields or interdisciplinary research could broaden his impact and open up new avenues for exploration.
  2. Increasing Research Output
    Publishing more papers, especially in higher impact journals, could further enhance his profile. Diversifying his publication venues could also increase visibility in different scientific communities.
  3. Expanding Collaborative Networks
    Building collaborations with researchers outside his current network could provide new perspectives and opportunities. Expanding international collaborations could further enhance his research scope and impact.
  4. Securing Funding
    Actively seeking and securing more research grants and funding opportunities could provide the resources needed for larger and more ambitious projects, enhancing the scope and depth of his research.
  5. Enhancing Public Engagement
    Increasing efforts to communicate research findings to a broader audience, including through popular science channels or public talks, could improve public understanding of his work and its relevance.

Conclusion

Dr. Julio Corredoira Vázquez is a distinguished researcher with a robust track record in lanthanoid ion coordination chemistry and luminescent thermometry. His innovative research, high-impact publications, and strong citation metrics reflect his significant contributions to the field. However, there are opportunities for further growth, including broadening his research topics, increasing his research output, expanding his collaborative networks, securing additional funding, and enhancing public engagement. Addressing these areas for improvement could further solidify his position as a leading scientist and enhance the impact of his work on a global scale.