Rosa Martha Pérez Gutiérrez | Metal Matrix Composites | Breakthrough Research Award

Rosa Martha Pérez Gutiérrez | Metal Matrix Composites | Breakthrough Research Award

Dr. Rosa Martha Pérez Gutiérrez | Instituto Politécnico Nacional | Mexico

Dr. Rosa Martha Pérez Gutiérrez is a distinguished Mexican scientist with a lifelong dedication to biological sciences, pharmacognosy, and natural product research. She earned her Bachelor’s degree in Industrial Pharmaceutical Chemistry from the Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN) between 1961 and 1964, and later completed her Doctorate in Biological Sciences at Universidad Autónoma Metropolitana-Xochimilco in 1997, graduating with the Medal of Merit and recognition as the first doctoral graduate of her program. Over her illustrious career, she has served in prominent teaching and research roles across several prestigious institutions, including the Escuela Nacional de Ciencias Biológicas, Universidad Nacional Autónoma de México (UNAM), Universidad La Salle, and IPN’s Escuela Superior de Ingeniería Química e Industrias Extractivas (ESIQIE), where she continues as Head of the Natural Products Research Laboratory. Dr. Pérez Gutiérrez has made remarkable contributions as a professor of Organic Chemistry, Phytochemistry, and Toxicology, and has organized and presented numerous national and international courses and conferences on mass spectrometry, environmental contamination, and bioactive compounds. Her pioneering research, supported by CONACYT and other agencies, has explored natural antioxidants, antidiabetic and anti-obesity agents, and the biosynthesis of silver nanoparticles with biomedical applications. She has authored and coordinated various scientific projects focused on Mexican medicinal plants, marine organisms, and phytochemicals, contributing significantly to pharmacological innovation. Beyond her research, she has served on editorial boards of leading journals such as Pharmacognosy Magazine and Pharmacognosy Research and participated in national scientific committees and award juries. Her international influence is reflected through invited lectures in Poland and Spain, highlighting her role as a global ambassador of Mexican natural product science. Through her academic excellence and pioneering spirit, Dr. Pérez Gutiérrez has become a trailblazer and mentor in biological and pharmaceutical research in Latin America.

Profile: Scopus | Googlescholar

Featured Publications 

Pérez Gutiérrez, R. M., Téllez Gómez, J., Mota Flores, J. M., Corea Téllez, M., & Muñiz Ramírez, A. (2025). Baicalin–Myricetin-coated selenium nanoparticles mitigate pathology in an Aβ1-42 mice model of Alzheimer’s disease. Pharmaceuticals, 18(9), 1391.

Muñiz-Ramírez, A., López, B. A., & Pérez Gutiérrez, R. M. (2025). Starch biopolymer functionalized with Ipomoea batatas extract: A natural system for bioactive delivery in type II diabetes. Current Drug Delivery.

García-Campoy, A. H., Pérez Gutiérrez, R. M., García Báez, E. V., & Muñiz-Ramírez, A. (2024). Methanolic extract of Tillandsia recurvata reduces blood glucose, triglycerides, and cholesterol levels. Botanical Sciences, 102(4), 1251–1264.

Pérez Gutiérrez, R. M., Rodríguez-Serrano, L. M., Laguna-Chimal, J. F., de la Luz Corea, M., Paredes-Carrera, S. P., & Téllez Gómez, J. (2024). Geniposide and harpagoside functionalized cerium oxide nanoparticles as a potential neuroprotective. International Journal of Molecular Sciences, 25(8), 4262.

González-Anota, D. E., Paredes-Carrera, S. P., Pérez-Gutiérrez, R. M., Arciniega-Caballero, B., Borja-Urby, R., Sánchez-Ochoa, J. C., & Rojas-García, E. (2023). Green synthesis by microwave irradiation of TiO₂ using Cinnamomum verum and the application in photocatalysis. Journal of Chemistry, 2023, Article 2245685.

Dr. Kai Xiong | Material | Best Researcher Award

Dr. Kai Xiong | Material | Best Researcher Award

Dr. Kai Xiong , Yunnan University , China.

Dr. Kai Xiong, Ph.D., is a Professor at Yunnan University and a Master Supervisor. A high-level introduced young talent in Yunnan Province and a core faculty member at Donglu, he specializes in multi-scale simulation and the design of rare and high-entropy materials. He has led major research projects, including one National Natural Science Foundation of China (NSFC) project and multiple provincial programs. With over 100 published papers, five software copyrights, and a textbook, he has significantly contributed to material science. His work bridges fundamental research with industrial applications, enhancing innovation in non-ferrous metal materials. 🔬📖

Publication Profile

Scopus
Orcid

Education & Experience 🎓🔬

  • Ph.D. in Materials Science, specialized in multi-scale simulation and material design 🏗️
  • Professor, Yunnan University, mentoring master’s students and conducting advanced research 📚
  • High-level Young Talent, recognized by Yunnan Province for academic excellence 🏅
  • Young & Middle-Aged Backbone Teacher, contributing to scientific advancement at Yunnan University 👨‍🏫
  • Principal Investigator, leading multiple national and provincial research projects 🔬
  • Industry Collaborations, working on enterprise-sponsored research for material innovation ⚙️

Suitability Summmary

Dr. Kai Xiong, a distinguished Professor at Yunnan University, is an ideal candidate for the Best Researcher Award due to his exceptional contributions to material science and engineering. As a high-level introduced young talent in Yunnan Province and a key faculty member at Yunnan University, he has significantly advanced the field of multi-scale simulation and the design of rare and precious non-ferrous metals and high-entropy materials. His research has had a profound impact on the development of next-generation materials, contributing both theoretically and practically to the field.

Professional Development 🚀

Dr. Kai Xiong has made remarkable strides in computational materials science, focusing on multi-scale simulation and the development of advanced non-ferrous and high-entropy materials. His expertise spans theoretical modeling and experimental validation, enabling breakthrough discoveries in material performance enhancement. He actively mentors students, contributes to industrial applications, and collaborates on national and provincial projects. His research has yielded patented innovations, software tools, and a specialized textbook. Through continuous learning and interdisciplinary collaboration, he pushes the boundaries of material science, bridging academia and industry to drive technological advancements in rare and precious metals. 🔍🔧📘

Research Focus 🔬💡

Dr. Kai Xiong specializes in the multi-scale simulation and design of rare and precious non-ferrous metals and high-entropy materials. His work integrates computational modeling, experimental validation, and industrial applications to enhance material properties. Key areas include atomic-level material behavior analysis, nanostructured alloy development, and mechanical and thermal stability optimization. His research plays a vital role in advanced manufacturing, aerospace, and electronic applications, improving material efficiency and sustainability. With a strong foundation in applied physics, chemistry, and engineering, he contributes to cutting-edge advancements that redefine the future of materials science. 🏗️⚡🔍

Awards & Honors 🏆🎖️

  • High-Level Young Talent, Yunnan Province 🏅
  • Young & Middle-Aged Backbone Teacher, Yunnan University 🎓
  • Principal Investigator of NSFC Project 🔬
  • Leader of Yunnan Province Major Science & Technology Programs 🚀
  • Published 100+ Research Papers in Prestigious Journals 📖
  • Author of a Specialized Material Science Textbook 📚
  • Holder of 5 Software Copyrights for Scientific Innovations 💻

Publication Top Notes

  • Machine learning inverse design of high-strength mid-temperature Ag-based solders

    • Journal: Materials & Design
    • Publication Date: April 2025
    • DOI: 10.1016/j.matdes.2025.113736
    • Contributors: Chengchen Jin, Kai Xiong, Yingwu Wang, Shunmeng Zhang, Yunyang Ye, Hui Fang, Aimin Zhang, Hua Dai, Yong Mao
  • Phase size induced anomalous plastic behavior in AuSn-Au₅Sn duplex alloy

    • Journal: Materials Science and Engineering: A
    • Publication Date: March 2025
    • DOI: 10.1016/j.msea.2025.147911
    • Contributors: Rui Ma, Yingjie Sun, Hualong Ge, Wenyan Zhou, Haijun Wu, Lihua Ma, Shaoping Lu, Shunmeng Zhang, Zhiwei Xia, Kai Xiong, et al.
  • High‐throughput calculation integrated with stacking ensemble machine learning for predicting elastic properties of refractory multi‐principal element alloys

    • Journal: Materials Genome Engineering Advances
    • Publication Date: March 12, 2025
    • DOI: 10.1002/mgea.70004
    • Contributors: Chengchen Jin, Kai Xiong, Congtao Luo, Hui Fang, Chaoguang Pu, Hua Dai, Aimin Zhang, Shunmeng Zhang, Yingwu Wang
  • Strength-ductility trade-off in NbTaTiV refractory multi-principal element alloys

    • Journal: Materials Science and Engineering: A
    • Publication Date: February 2025
    • DOI: 10.1016/j.msea.2024.147677
    • Contributors: Yingwu Wang, Kai Xiong, Lingjie Yang, Shunmeng Zhang, Hui Fang, Hua Dai, Chengchen Jin, Yunyang Ye, Congtao Luo, Junjie He, et al.
  • Hf-induced strengthening and lattice distortion in HfNbTaTiV refractory multi-principal element alloys

    • Journal: Journal of Materials Research and Technology
    • Publication Date: January 2025
    • DOI: 10.1016/j.jmrt.2024.12.256
    • Contributors: Yingwu Wang, Kai Xiong, Wei Li, Chengchen Jin, Haijun Wu, Hua Dai, Zihang Yang, Hongmo Yang, Shunmeng Zhang

 

Haiyun Wang | Materials Science | Best Researcher Award

Haiyun Wang | Materials Science | Best Researcher Award

Dr. Haiyun Wang , University of Sheffield, China.

Dr. Haiyun Wang is an accomplished materials scientist with a PhD in Engineering Materials from the University of Sheffield, UK (2019). Specializing in aerospace materials and composite materials, she has made significant contributions to microstructure control, fatigue life prediction, and atomic-scale studies of advanced materials. With a strong background in designing bulk metallic glass composites and working on cutting-edge company projects, she is known for her innovative approach to material engineering. Dr. Wang’s research focuses on developing and optimizing materials for industrial applications, making her a key contributor to advancements in materials science🌟🔬

📚🔬Publication Profile

Orcid

Suitability For The Award

Haiyun Wang is a highly deserving candidate for the Best Researcher Awards, having made significant contributions to the field of engineering materials, particularly in composite materials and metallic glasses. With a PhD in Engineering Materials from the University of Sheffield, he possesses a strong academic foundation, complemented by a Master’s degree in Aerospace Materials.

Education & Experience:

  • 🎓 PhD: Engineering Materials, University of Sheffield, UK (2019)
  • 🎓 MSc: Aerospace Materials, University of Sheffield, UK (2013)
  • 🧑‍🔬 Extensive experience in material microstructure analysis and fatigue life modeling
  • ⚙️ Specialized in high-strength aluminum alloys and bulk metallic glass composites
  • 🏭 Collaborated on industry-specific projects involving powder metallurgy and 3D printing

Professional Development

Dr. Haiyun Wang has been a key player in several high-impact research projects, focusing on material microstructures, fatigue prediction models, and advanced composite materials. She developed new techniques to optimize the mechanical properties of SiCp/Al composites and CuZr-based bulk metallic glass composites, enhancing their industrial applicability. Her experience spans atomic-scale research, heat treatment processes, and dynamic deformation damage analysis. Dr. Wang’s continuous learning and dedication to her field have equipped her with cutting-edge expertise, making her a significant force in materials science and engineering. 💡🔧

Research Focus

Dr. Haiyun Wang’s research focuses on materials science, with a specialization in composite materials and bulk metallic glass composites. Her work on SiCp/Al composites involves microstructure control and fatigue life prediction, while her projects on CuZr-based alloys explore phase separation and mechanical property optimization. She also delves into high-strength aluminum alloys, improving their microstructure through processes like Selective Laser Melting (SLM). With a strong foundation in atomic-scale studies and material evolution, her research has critical applications in aerospace and industrial manufacturing. 🧬⚛️

Awards and Honors 🏆✨

  • 🏅 Recognized for groundbreaking research in composite materials
  • 🌟 Best Dissertation Award, PhD Thesis on SiCp/Al Composites
  • 🏆 Published in leading journals on materials science
  • 🔬 Awarded for contributions to company projects on bulk metallic glasses
  • 🥇 Recipient of scholarships during MSc and PhD studies

Publications 📚📝

Conclusion

Haiyun Wang’s diverse research portfolio demonstrates a profound understanding of material behavior and innovative approaches to material design and processing. His contributions advance academic knowledge and have practical implications for industries relying on high-performance materials. Given his impactful research, dedication to innovation, and commitment to enhancing material properties, he stands out as a leading figure in the field of engineering materials, making him an exemplary candidate for the Best Researcher Awards.