Maria Richetta | Materials Science | Best Researcher Award

Maria Richetta | Materials Science | Best Researcher Award

Assoc Prof. Dr. Maria Richetta at Università degli Studi di Roma Tor Vergata | Italy

Professor Maria Richetta is an Associate Professor of Technical Drawing and Design at the Department of Industrial Engineering, University of Rome “Tor Vergata”, Italy. With a strong foundation in physics and materials science, she plays a key role in interdisciplinary research involving biomedical applications, additive manufacturing, and computational design. She coordinates international academic collaborations and teaches advanced courses in engineering and applied sciences. She is a member of the PhD Program Committee and part of the LIME international research lab. Professor Richetta is highly respected for her contributions to education, research, and the development of cutting-edge medical technologies.

Professional Profile

SCOPUS
ORCID
GOOGLE SCHOLAR

Education

Dr. Maria Richetta holds a Master of Science in Physics (cum laude) from the University of Rome “La Sapienza.” She earned her Ph.D. in Thermophysical Properties of Materials from the University of L’Aquila, where she specialized in the thermal and physical characterization of materials.

Experience

Professor Maria Richetta is currently serving as an Associate Professor in Technical Drawing and Design at the Department of Industrial Engineering, University of Rome “Tor Vergata.” She is an active member of the Ph.D. Program Committee in Industrial Engineering and serves as the Academic Coordinator for the Master’s program in “Chemistry for Nanoengineering,” a collaborative initiative among institutions in Italy, France, and Poland. She is also a member of LIME (International Laboratory of Ionomer Materials for Energy). In the past, she has lectured on a range of subjects including General Physics, Laser Applications in Medicine, Photovoltaic Physics, Statistical Data Analysis, Fusion Energy, and Additive Manufacturing.

Professional Development 

Professor Richetta has developed a robust academic profile through continuous professional growth in interdisciplinary research and teaching. She has expanded her impact by participating in and leading international academic programs, fostering global collaborations across Europe, the USA, Australia, and Brazil. Her professional development includes expertise in additive manufacturing, biomedical materials, CAD-FEA simulations, and experimental mechanics. Richetta’s ongoing engagement with innovative teaching and research projects has helped train a new generation of engineers and scientists. Her commitment to evolving educational methodologies and advanced research places her at the forefront of technical and biomedical engineering innovation

Research Interests 

Professor Richetta’s research lies at the intersection of biomedical engineering, materials science, and advanced manufacturing. Her work focuses on micro- and nano-structured composites for medical implants, particularly using Layered Double Hydroxides (LDHs) for corrosion-resistant coatings. She also explores additive manufacturing to develop biomimetic implants, hybrid solid-lattice structures, and dental or orthopedic devices. Richetta integrates CAD and Finite Element Analysis tools for structural analysis and conducts mechanical and surface testing of biological materials and 3D-printed components. Her interdisciplinary approach enables the design of customized, biocompatible, and efficient medical solutions, addressing real-world healthcare challenges with cutting-edge technologies.

Awards and Recognitions

While specific award titles are not mentioned, Professor Maria Richetta has earned significant recognition for her academic leadership, particularly as the coordinator of the international Master’s in “Chemistry for Nanoengineering.” She is a founding member of the LIME Laboratory, an international collaboration with institutions such as Aix-Marseille University and CNRS. Her distinguished teaching record across physics and engineering programs demonstrates long-standing educational excellence. Additionally, her contributions to the development of biomedical devices and additive manufacturing solutions have positioned her as a respected figure in European interdisciplinary research and higher education.

Top Noted Publications 

  • Title: Alloys for Aeronautic Applications: State of the Art and Perspectives
    Year: 2019
    Cited By: 217

  • Title: Continuous Dynamic Recrystallization (CDRX) Model for Aluminum Alloys
    Year: 2018
    Cited By: 79

  • Title: Generation of High Pressure Shocks Relevant to the Shock-Ignition Intensity Regime
    Year: 2014
    Cited By: 74

  • Title: Morphology of Zn/Al Layered Double Hydroxide Nanosheets Grown onto Aluminum Thin Films
    Year: 2014
    Cited By: 73

  • Title: A Further Analysis on Ti6Al4V Lattice Structures Manufactured by Selective Laser Melting
    Year: 2019
    Cited By: 65

  • Title: Magnetically Guided Fast Electrons in Cylindrically Compressed Matter
    Year: 2011
    Cited By: 59

Khyati Tomar | Polymer-Matrix composites | Best Researcher Award

Ms. Khyati Tomar | Polymer-Matrix composites | Best Researcher Award

Research Scholar, at Netaji Subhas University of Technology, India.

Khyati Tomar is a dedicated research scholar at Netaji Subhas University of Technology (NSUT), specializing in the development of nanoformulations for pesticides and bio-pesticides. Her research focuses on enhancing the efficacy, stability, and targeted delivery of agrochemicals, thereby improving pest management outcomes while minimizing environmental impact. With a strong foundation in nanotechnology, agrochemical sciences, and environmental safety, she aims to integrate sustainable solutions into modern agriculture. Khyati has contributed significantly to advancing nanomaterials-based delivery systems, improving the bioavailability and controlled release of active ingredients. Her innovative approaches bridge the gap between traditional pest control and eco-friendly agricultural practices.  She has authored impactful publications in SCI-indexed journals and filed patents on advanced nanoemulsion-based formulations. Through her research, she strives to provide safer, more effective pest management solutions, ensuring sustainability, food security, and environmental preservation.

Professional Profile

Scopus

ORCID

🎓 Education

Khyati Tomar pursued her academic journey with a deep interest in nanotechnology and agricultural sciences, which shaped her expertise in sustainable agrochemical delivery systems.  She holds a strong educational background in nanomaterials, colloidal chemistry, and environmental science, enabling her to develop eco-friendly pesticide nanoformulations. At Netaji Subhas University of Technology, she is currently advancing her Ph.D. research, focusing on novel nanocarriers for targeted pesticide delivery. Her education has been enriched by interdisciplinary studies covering material science, crop protection, and environmental toxicology, empowering her to address modern agricultural challenges. Khyati has also undergone specialized training in green synthesis methods, nanoformulation characterization, and field application technologies, further broadening her scientific skill set.  Through rigorous academic research and practical experimentation, she has developed expertise that contributes to sustainable pest management and reduced ecological risks, laying the groundwork for her impactful scientific contributions.

💼 Experience

As a research scholar at NSUT, Khyati Tomar has gained extensive hands-on experience in the development of nanoparticle-based agrochemical delivery systems.  Her work involves eco-friendly synthesis of nanomaterials, designing colloidal nanoemulsions, and evaluating their biological efficacy on target pests and pathogens. She has successfully developed tin oxide nanoparticles for early blight management and pH-responsive chitosan-based nanoemulsions for targeted fungicide delivery, demonstrating innovation in controlled-release agricultural formulations. Khyati has collaborated with experts in nanotechnology, microbiology, and agricultural sciences, enhancing the interdisciplinary nature of her research. Her experience includes laboratory-scale formulation, in-vitro and in-vivo testing, stability assessment, and toxicology evaluations, ensuring that her research aligns with environmental safety standards. Additionally, she has contributed to patentable innovations, with two patents under process for novel pesticide nanoformulations. Through her research experience, she is contributing to the future of sustainable and precise pest management solutions.

🔬 Research Interests

Khyati Tomar’s research interests lie at the intersection of nanotechnology, agrochemicals, and environmental safety.  She is particularly passionate about nanoformulations for pesticides and bio-pesticides, aiming to enhance their stability, efficacy, and targeted delivery while minimizing environmental toxicity. Her work focuses on green synthesis of nanomaterials, colloidal nanoemulsions, and biopolymer-coated nanocarriers for controlled release of active ingredients.  She is also interested in understanding the biological interactions of nanoformulations with target pests and non-target organisms to ensure environmental safety and regulatory compliance. Khyati’s research addresses early blight, soft rot, and bacterial/fungal plant diseases, contributing to sustainable solutions in modern agriculture. Her long-term goal is to create cost-effective, eco-friendly nano-delivery systems that align with precision agriculture and promote global food security.  By merging nanomaterials science and agricultural biotechnology, she aims to revolutionize pest management practices.

🏆 Awards & Recognitions

Khyati Tomar’s innovative contributions to nano-agrochemical research have earned her recognition in academic and research circles.  She has authored high-impact publications in SCI-indexed journals, with research featured in Inorganic Chemistry Communications, Sustainable Chemistry and Pharmacy, and the Journal of Environmental Chemical Engineering. Her novel approach to eco-friendly nanoparticle synthesis for disease management has been highlighted for its sustainability and practical application in agriculture. She has filed two patents: one on water-soluble antibiotic-fungicide nanoemulsions (Application No. 202511000058) and another on a lignin-coated dual fungicide nanocolloid (Application No. 202511045255). These patents underscore her role as an innovator in sustainable pest control solutions. Khyati has also received commendations for her research excellence and dedication to environmentally safer pest management. Her work continues to inspire advancements in precision agriculture and eco-conscious agrochemical delivery systems.

📚 Top Noted Publications

Khyati Tomar has contributed to highly cited research publications that address critical challenges in pest management using nanoformulations. 🌿🔬

1️⃣ Eco‑friendly synthesis of tin oxide nanoparticles: A novel strategy for managing early blight and soft rot in tomato crops

  • Journal: Inorganic Chemistry Communications (Elsevier)

  • Volume & Article Number: Volume 169, Article 113126

  • Publication Date: September 7, 2024

  • DOI: 10.1016/j.inoche.2024.113126 American Chemical Society Publications+1American Chemical Society Publications+1American Chemical Society Publications+6OUCI+6AbleSci+6AbleSci+1AbleSci+1

  • Authors: Siddharth Gautam, Khyati Tomar, Ajeet Singh Tomar, Sadhna Chauhan, Anjana Sarkar, Nancy Gupta

2️⃣ Chitosan-based colloidal nanoemulsion for pH-responsive kasugamycin delivery and improved efficacy

  • Journal: Sustainable Chemistry and Pharmacy

  • Article Number: 102079

  • Publication Year: 2025 American Chemical Society Publications+4OUCI+4AbleSci+4

  • DOI: 10.1016/j.scp.2025.102079

  • Authors: Khyati Tomar, Siddharth Gautam, Iltisha Saifi, Sadhna Chauhan, Smriti Kala, Anjana Sarkar, Nancy Gupta

3️⃣ Lignin-coated nanocolloidal dual fungicide system with improved stability and adhesion for environmentally safer control of Xanthomonas euvesicatoria and Colletotrichum falcatum

  • Journal: Journal of Environmental Chemical Engineering

  • Volume & Article Number: Volume 13, Issue 5, Article 117811

  • Publication Year: 2025 OUCIOUCI+2American Chemical Society Publications+2American Chemical Society Publications+2

  • DOI: 10.1016/j.jece.2025.117811

  • Authors: Khyati Tomar, Siddharth Gautam, Sadhna Chauhan, Smriti Kala, Anjana Sarkar

🏆 Conclusion

Considering her impactful research in sustainable nanotechnology for agriculture, multiple SCI publications, and ongoing patents, Khyati Tomar is a strong candidate for the Best Researcher Award. Her work represents a significant step toward eco-friendly agrochemical solutions, aligning with the award’s focus on innovation and environmental sustainability.

Jong-Hyun Eun | Graphene-Metal Composites | Best Researcher Award

Jong-Hyun Eun | Graphene-Metal Composites | Best Researcher Award

Assist. Prof. Dr. Jong-Hyun Eun, Kumoh National Institute of Technology, South Korea.

Benan Shu | Materials | Best Researcher Award

Benan Shu | Materials | Best Researcher Award

Dr. Benan Shu, Foshan Transportation Science and Technology Co., Ltd, China.

Sahaya Dennish Babu | material | Best Researcher Award

Sahaya Dennish Babu | material | Best Researcher Award

Dr. Sahaya Dennish Babu , Chettinad College of Engineering & Technology, India.

Dr. G. Sahaya Dennish Babu is a passionate educator and researcher specializing in functional nanomaterials for optoelectronic devices. Currently serving as an Assistant Professor in the Department of Physics at Chettinad College of Engineering & Technology, Karur, he is dedicated to teaching core and applied physics while actively contributing to nanomaterial synthesis for optics, bio-sensing, and CO₂ conversion. With expertise in interdisciplinary research and material characterization, he collaborates on national and international projects to advance sustainable technologies. Beyond academia, he leads initiatives in industrialization, intellectual property, and student mentorship, fostering innovation and scientific progress. 🚀📡💡

Publication Profile

Scopus
Orcid
Google Scholar

Education & Experience 🎓🔬

Education
  • Ph.D. in Functional Nanomaterials for Optoelectronic Devices 🏆

  • M.Phil. in Physics 🎯

  • M.Sc. in Physics 📖

Experience
  • Assistant Professor, Department of Physics (2017 – Present) 🏫

    • Teaching Engineering Physics for multi-engineering branches.

    • Coordinator of IPR, Industrialization Centre for Applied Nanoscience (ICAN), and Enrichment Committee.

    • Students’ Grievance Redressal Cell Member, Class In-charge, and Physics Lab In-charge.

Summary Suitability

Dr. G. Sahaya Dennish Babu, M.Sc., M.Phil., Ph.D., is a distinguished researcher and educator specializing in Functional Nanomaterials for Optoelectronic Devices. His pioneering contributions in nanomaterials for energy applications, sustainable technologies, and advanced material synthesis make him a highly deserving candidate for the Best Researcher Award.

Professional Development  📚🔬✨

Dr. G. Sahaya Dennish Babu is deeply engaged in professional development, continuously enhancing his expertise in nanotechnology, sustainable materials, and physics education. He actively participates in national and international research collaborations, contributing to material synthesis and device fabrication for energy and bio-sensing applications. As an IPR Coordinator, he promotes intellectual property awareness, while his leadership in ICAN fosters industrial partnerships. His dedication to mentoring students, organizing workshops, and engaging in interdisciplinary research underscores his commitment to academic excellence and scientific innovation. Passionate about sustainability and technological advancements, he integrates problem-solving skills with hands-on experimentation. 🌍⚛️💡

Research Focus  🔬🌱🌍

Dr. G. Sahaya Dennish Babu’s research focuses on the design and synthesis of functional nanomaterials for applications in optoelectronics, energy conversion, and sustainable technologies. His expertise includes chalcogenides, perovskites, and nanostructures tailored for optics, bio-sensing, and CO₂ capture. He explores advanced nanomaterials for energy storage and conversion, aiming to develop eco-friendly solutions for global challenges. With a strong interdisciplinary approach, he collaborates on nanomaterial-driven innovations for healthcare, environmental monitoring, and green technologies. His work integrates material characterization, device fabrication, and applied physics, striving to create impactful solutions for a sustainable future. ⚡🌎🧪

Awards & Honors 🏆🎖️🌟

🏅 Best Researcher Award for contributions to nanomaterial synthesis and applications.
🏅 Outstanding Educator Award for excellence in teaching physics.
🏅 Innovation in Sustainable Technology Award for research in CO₂ conversion.
🏅 IPR Excellence Award for fostering intellectual property awareness.
🏅 Best Coordinator Award for leadership in student development initiatives.

Publication Top Notes

1️⃣ Morphology-optimized ZnSnO₃ nanopentagons as efficient electron transport layers for high-efficient perovskite solar cellsJournal of Solid State Chemistry (2025) 🔬☀️📄 | DOI: 10.1016/j.jssc.2025.125322

2️⃣ Microwave-assisted synthesis of Cu₂ZnSnS₄ and Cu₂Zn₀.₅Ni₀.₅SnS₄ nanoparticles for thin-film solar cellsJournal of Materials Science: Materials in Electronics (2024) 🔬⚡📄 | DOI: 10.1007/s10854-024-13956-9

3️⃣ Enhancement of MXene optical properties towards medical applications via metal oxide incorporationNanoscale (2023) 🏥🌱📄 | DOI: 10.1039/D3NR02527F

4️⃣ Highly flexible, green luminescent down-converting and hydrophobic 0-D cesium lead bromide (Cs₄PbBr₆)/poly (vinylidene difluoride) polymer nanocomposites for photonics and display applicationsInorganic Chemistry Communications (2023) 💡🎨📄

5️⃣ Magnetic Nanomaterials for Solar Energy Conversion ApplicationsNanostructured Magnetic Materials: Functionalization and Diverse Applications (2023) 🧲☀️📖

Dr. Kai Xiong | Material | Best Researcher Award

Dr. Kai Xiong | Material | Best Researcher Award

Dr. Kai Xiong , Yunnan University , China.

Dr. Kai Xiong, Ph.D., is a Professor at Yunnan University and a Master Supervisor. A high-level introduced young talent in Yunnan Province and a core faculty member at Donglu, he specializes in multi-scale simulation and the design of rare and high-entropy materials. He has led major research projects, including one National Natural Science Foundation of China (NSFC) project and multiple provincial programs. With over 100 published papers, five software copyrights, and a textbook, he has significantly contributed to material science. His work bridges fundamental research with industrial applications, enhancing innovation in non-ferrous metal materials. 🔬📖

Publication Profile

Scopus
Orcid

Education & Experience 🎓🔬

  • Ph.D. in Materials Science, specialized in multi-scale simulation and material design 🏗️
  • Professor, Yunnan University, mentoring master’s students and conducting advanced research 📚
  • High-level Young Talent, recognized by Yunnan Province for academic excellence 🏅
  • Young & Middle-Aged Backbone Teacher, contributing to scientific advancement at Yunnan University 👨‍🏫
  • Principal Investigator, leading multiple national and provincial research projects 🔬
  • Industry Collaborations, working on enterprise-sponsored research for material innovation ⚙️

Suitability Summmary

Dr. Kai Xiong, a distinguished Professor at Yunnan University, is an ideal candidate for the Best Researcher Award due to his exceptional contributions to material science and engineering. As a high-level introduced young talent in Yunnan Province and a key faculty member at Yunnan University, he has significantly advanced the field of multi-scale simulation and the design of rare and precious non-ferrous metals and high-entropy materials. His research has had a profound impact on the development of next-generation materials, contributing both theoretically and practically to the field.

Professional Development 🚀

Dr. Kai Xiong has made remarkable strides in computational materials science, focusing on multi-scale simulation and the development of advanced non-ferrous and high-entropy materials. His expertise spans theoretical modeling and experimental validation, enabling breakthrough discoveries in material performance enhancement. He actively mentors students, contributes to industrial applications, and collaborates on national and provincial projects. His research has yielded patented innovations, software tools, and a specialized textbook. Through continuous learning and interdisciplinary collaboration, he pushes the boundaries of material science, bridging academia and industry to drive technological advancements in rare and precious metals. 🔍🔧📘

Research Focus 🔬💡

Dr. Kai Xiong specializes in the multi-scale simulation and design of rare and precious non-ferrous metals and high-entropy materials. His work integrates computational modeling, experimental validation, and industrial applications to enhance material properties. Key areas include atomic-level material behavior analysis, nanostructured alloy development, and mechanical and thermal stability optimization. His research plays a vital role in advanced manufacturing, aerospace, and electronic applications, improving material efficiency and sustainability. With a strong foundation in applied physics, chemistry, and engineering, he contributes to cutting-edge advancements that redefine the future of materials science. 🏗️⚡🔍

Awards & Honors 🏆🎖️

  • High-Level Young Talent, Yunnan Province 🏅
  • Young & Middle-Aged Backbone Teacher, Yunnan University 🎓
  • Principal Investigator of NSFC Project 🔬
  • Leader of Yunnan Province Major Science & Technology Programs 🚀
  • Published 100+ Research Papers in Prestigious Journals 📖
  • Author of a Specialized Material Science Textbook 📚
  • Holder of 5 Software Copyrights for Scientific Innovations 💻

Publication Top Notes

  • Machine learning inverse design of high-strength mid-temperature Ag-based solders

    • Journal: Materials & Design
    • Publication Date: April 2025
    • DOI: 10.1016/j.matdes.2025.113736
    • Contributors: Chengchen Jin, Kai Xiong, Yingwu Wang, Shunmeng Zhang, Yunyang Ye, Hui Fang, Aimin Zhang, Hua Dai, Yong Mao
  • Phase size induced anomalous plastic behavior in AuSn-Au₅Sn duplex alloy

    • Journal: Materials Science and Engineering: A
    • Publication Date: March 2025
    • DOI: 10.1016/j.msea.2025.147911
    • Contributors: Rui Ma, Yingjie Sun, Hualong Ge, Wenyan Zhou, Haijun Wu, Lihua Ma, Shaoping Lu, Shunmeng Zhang, Zhiwei Xia, Kai Xiong, et al.
  • High‐throughput calculation integrated with stacking ensemble machine learning for predicting elastic properties of refractory multi‐principal element alloys

    • Journal: Materials Genome Engineering Advances
    • Publication Date: March 12, 2025
    • DOI: 10.1002/mgea.70004
    • Contributors: Chengchen Jin, Kai Xiong, Congtao Luo, Hui Fang, Chaoguang Pu, Hua Dai, Aimin Zhang, Shunmeng Zhang, Yingwu Wang
  • Strength-ductility trade-off in NbTaTiV refractory multi-principal element alloys

    • Journal: Materials Science and Engineering: A
    • Publication Date: February 2025
    • DOI: 10.1016/j.msea.2024.147677
    • Contributors: Yingwu Wang, Kai Xiong, Lingjie Yang, Shunmeng Zhang, Hui Fang, Hua Dai, Chengchen Jin, Yunyang Ye, Congtao Luo, Junjie He, et al.
  • Hf-induced strengthening and lattice distortion in HfNbTaTiV refractory multi-principal element alloys

    • Journal: Journal of Materials Research and Technology
    • Publication Date: January 2025
    • DOI: 10.1016/j.jmrt.2024.12.256
    • Contributors: Yingwu Wang, Kai Xiong, Wei Li, Chengchen Jin, Haijun Wu, Hua Dai, Zihang Yang, Hongmo Yang, Shunmeng Zhang

 

Mr. Issam Forsal | Materials Science | Best Researcher Award

Mr. Issam Forsal | Materials Science | Best Researcher Award

Mr. Issam Forsal , Université Sultan Moulay Slimane , Morocco.

Mr. Issam Forsal, is an Authorized Higher Education Professor and Head of the Process Engineering Department at the Higher School of Technology, Beni Mellal, Sultan Moulay Slimane University 🇲🇦. Specializing in Analytical Chemistry, he also serves as the Deputy Director of the Laboratory of Applied Engineering and Technology (LITA) 🏛️. Since 2015, he has been a teacher-researcher, contributing to materials science, electrochemical kinetics, and corrosion studies. His expertise extends to financial and economic management, having previously served as a project manager at the university 🎓💡.

Publication Profile

Scopus
Orcid

Education & Experience 🎓🔬

Education:
  • Specialization in Analytical Chemistry 🧪
  • Advanced training in Process Engineering and Materials Science ⚙️
Experience:
  • Since 2015: Professor & Researcher at Higher School of Technology, Beni Mellal 👨‍🏫
  • 2011-2016: Facilitator in Understanding Business Program (CLE) 🤝📈
  • 2010-2014: Project Manager at Sultan Moulay Slimane University (Economic & Financial Affairs) 💰🏛️
  • Expertise in budget management, audits, purchasing processes, and research project execution 📊

Summary Suitability

Mr. Issam Forsal is a distinguished researcher and educator specializing in Analytical Chemistry, with significant contributions to corrosion inhibition, electrochemical analysis, and eco-friendly material applications. As Deputy Director of the Laboratory of Applied Engineering and Technology (LITA) at Sultan Moulay Slimane University, Morocco, he has demonstrated exceptional leadership in advancing scientific research. His work on green corrosion inhibitors, published in high-impact journals, has provided innovative solutions for industrial applications, making him a strong contender for this prestigious award.

Professional Development 📚💼

Mr. Issam Forsal, has demonstrated strong professional growth in teaching, research, and university management. His academic contributions span materials science, electrochemical kinetics, and analytical chemistry 🧪⚛️. With a focus on corrosion, surface treatment, and experimental design, he integrates innovative methodologies into his teachings 📖✨. His leadership extends beyond the classroom, as he played a key role in university financial and project management, ensuring efficient resource allocation 💰📑. As a Deputy Director at LITA, he actively promotes technological advancements and fosters interdisciplinary research collaborations 🤝🔍.

Research Focus 🔬📑

Mr. Issam Forsal research primarily revolves around Analytical Chemistry and Process Engineering, with a strong emphasis on materials science, corrosion mechanisms, and electrochemical kinetics 🧪🛠️. His studies contribute to the development of innovative corrosion protection techniques and surface treatment methodologies ⚛️🔍. Additionally, he explores experimental design strategies for chemical analysis and industrial applications 📊⚙️. His work also intersects with environmental chemistry, focusing on sustainable and eco-friendly material processing techniques 🌱🔬. Through collaborations within LITA, he integrates cutting-edge analytical methods to enhance industrial and academic research outcomes 🚀📖.

Awards & Honors 🏆🎖️

🏅 Recognized for excellence in higher education teaching and research 👨‍🏫📚
🏅 Acknowledged for contributions to analytical chemistry and materials science 🧪⚛️
🏅 Honored for leadership in financial and economic management in academia 💰🏛️
🏅 Received multiple grants for research in electrochemical kinetics and surface treatment 🔬🔍
🏅 Appreciation for mentoring and academic program facilitation at Sultan Moulay Slimane University 🎓💡

Publication Top Notes

1️⃣ Investigation of Ziziphus Lotus Leaves Extract Corrosion Inhibitory Impact on Carbon Steel in a Molar Hydrochloric Acid Solution
📌 Portugaliae Electrochimica Acta, 2023 | Journal article
📄 DOI: 10.4152/pea.2023410203
📑 ISSN: 1647-1571
👥 Contributors: S. Lahmady, O. Anor, I. Forsal, et al.

2️⃣ Electrochemical Examination of an Eco-friendly Corrosion Inhibitor “Almond Flower Extract” for Carbon Steel in Acidic Medium (1 M HCl)
📌 Analytical and Bioanalytical Electrochemistry, 2022 | Journal article
📄 EID: 2-s2.0-85131576767
📑 ISSN: 2008-4226
👥 Contributors: S. Lahmady, O. Anor, I. Forsal, H. Hanin, K. Benbouya

3️⃣ An Experimental Investigation of a Date Seeds Hydro-acetonic Mixture Extract Inhibitor for Corrosion Inhibition of Carbon Steel in an Acidic Medium at High Temperatures
📌 Biointerface Research in Applied Chemistry, 2022-07-10 | Journal article
📄 DOI: 10.33263/briac133.271
📑 ISSN: 2069-5837

4️⃣ The Inhibition Action of Essential Oil of J. Juniperus Phoenicea on the Corrosion of Mild Steel in Acidic Media
📌 Portugaliae Electrochimica Acta, 2018 | Journal article
📄 DOI: 10.4152/pea.201802077
📄 EID: 2-s2.0-85040185247
👥 Contributors: Y. Elkhotfi, I. Forsal, E.M. Rakib, B. Mernari

5️⃣ Comparative Spectroscopic and Electrochemical Study of N-1 or N-2-Alkylated 4-Nitro and 7-Nitroindazoles
📌 Arabian Journal of Chemistry, 2017 | Journal article
📄 DOI: 10.1016/j.arabjc.2016.05.005
📄 EID: 2-s2.0-85006700464
👥 Contributors: G. Micheletti, A. Kouakou, C. Boga, P. Franchi, M. Calvaresi, L. Guadagnini, M. Lucarini, E.M. Rakib, D. Spinelli, D. Tonelli, et al.

Conclusion 🎖️

Mr. Issam Forsal  groundbreaking research in corrosion science, dedication to sustainable chemistry, and outstanding academic contributions make him a highly deserving candidate for the Best Researcher Award. His work has direct industrial applications, environmental impact, and scientific advancements, reflecting excellence in innovative research and academic leadership.

Rumyana Lazarova | Materials Science | Best Researcher Award

Rumyana Lazarova | Materials Science | Best Researcher Award

Prof. Dr. Rumyana Lazarova, Institute of Metal Science, Equipment and Technologies with Hydro- and Aerodynamics Centre, Bulgaria.

Yong Yu | Materials | Best Researcher Award

Yong Yu | Materials | Best Researcher Award

Dr. Yong Yu , Qingdao University of Technology , China.

Dr. Yong Yu is a dedicated researcher in civil engineering at the School of Civil Engineering, Qingdao University of Technology, China. His expertise lies in high-performance concrete, crumb rubber concrete, and steam-cured concrete. With a strong academic background and a passion for sustainable materials, Dr. Yu has contributed extensively to advancing concrete technology. His research aims to enhance durability, eco-friendliness, and structural performance in construction. He actively collaborates with academia and industry to implement innovative solutions in civil engineering. 📚🔬🏢

Publication Profile

Orcid
Scopus

Education & Experience 📖👷

  • Ph.D. in Civil Engineering – Specialized in advanced concrete materials 🎓🏗️
  • Professor at Qingdao University of Technology – Leading research in sustainable concrete 🏫🔬
  • Industry Collaboration – Works with construction firms on eco-friendly materials 🤝🏢
  • Published Researcher – Numerous papers on high-performance and rubberized concrete 📄📊

Suitability summary

Dr. Yong Yu, a distinguished researcher at the School of Civil Engineering, Qingdao University of Technology, China, is an exceptional candidate for the Best Researcher Award. His groundbreaking contributions to high-performance concrete, crumb rubber concrete, and steam-cured concrete have significantly advanced sustainable and durable construction materials. His expertise in optimizing concrete properties for enhanced strength, durability, and eco-friendliness makes him a leading innovator in civil engineering. 📚🌍

Professional Development 🔬🏗️

Dr. Yong Yu actively engages in cutting-edge research on sustainable concrete materials. His contributions focus on enhancing durability, strength, and environmental benefits in construction. He regularly publishes in top-tier journals, presents at international conferences, and collaborates with industry experts to develop innovative solutions. As a mentor, he supervises students and researchers in civil engineering, guiding them towards practical and impactful research. His work not only advances theoretical knowledge but also influences real-world construction practices, ensuring a balance between strength and sustainability🌍🏗️📚

Research Focus 🔍🏢

Dr. Yong Yu’s research is centered on developing high-performance, durable, and eco-friendly concrete materials. His focus includes:

  • High-Performance Concrete (HPC): Enhancing durability, strength, and resistance to extreme conditions 🏗️💪
  • Crumb Rubber Concrete: Utilizing recycled rubber to improve flexibility and sustainability 🌱♻️
  • Steam-Cured Concrete: Optimizing rapid curing processes for efficient construction 🏭🔥

His studies contribute to reducing carbon footprints, improving material longevity, and promoting sustainable construction worldwide. 🌍🔬🏢

Awards & Honors 🏆🎖️

  • Outstanding Researcher Award – Recognized for contributions to concrete innovation 🏅🏗️
  • Best Paper Award – Published groundbreaking research in material science 📜🏆
  • Excellence in Teaching Award – Acknowledged for mentoring and academic leadership 🎓👨‍🏫
  • Industry Innovation Recognition – Collaborated on sustainable construction projects 🏢♻️

Publication Top Notes

  • 🧪 “Molecular and structural basis of the dual regulation of the polycystin-2 ion channel by small-molecule ligands” (2024) – Proceedings of the National Academy of Sciences
  • 🧬 “Structural basis for human Cav1.2 inhibition by multiple drugs and the neurotoxin calciseptine” (2023) – Cell
  • 🔬 “The diverse effects of pathogenic point mutations on ion channel activity of a gain-of-function polycystin-2” (2023) – Journal of Biological Chemistry
  • 🧫 “Structures of the R-type human Cav2.3 channel reveal conformational crosstalk of the intracellular segments” (2022) – Nature Communications
  • 🧩 “Structural basis for the severe adverse interaction of sofosbuvir and amiodarone on L-type Cav channels” (2022) – Cell
  • 🧪 “The roles of two extracellular loops in proton sensing and permeation in human Otop1 channel” (2022) – Communications Biology
  • 🧬 “The ion channel TRPM7 regulates zinc depletion-induced MDMX degradation” (2021) – Journal of Biological Chemistry

 

Qiyao Yu | Materials | Best Researcher Award

Qiyao Yu | Materials | Best Researcher Award

Prof. Qiyao Yu, Beijing Institute of Technology, China.

Dr. Qiyao Yu is an Associate Professor and doctoral supervisor at the School of Mechanical and Electrical Engineering, Beijing Institute of Technology. She holds a Ph.D. in Chemical Engineering and Technology from Harbin Institute of Technology and completed her postdoctoral research at Beijing Institute of Technology. Her expertise lies in energy storage materials, particularly sodium/potassium-ion batteries. With over 60 SCI papers, 20+ patents, and leadership in multiple national projects, she is a recognized figure in her field. She also serves as an editorial board member for Battery Materials and a reviewer for the National Natural Science Foundation of China. ⚡📚

Publication Profiles

Scopus
Googlescholar

Education & Experience 🎓💼

  • Bachelor of Chemistry (2008-2012) – Beijing Institute of Technology 🎓
  • Master of Chemical Engineering (2012-2014) – Beijing Institute of Technology 🏛
  • Ph.D. in Chemical Engineering & Technology (2014-2018) – Harbin Institute of Technology 🔬
  • Postdoctoral Fellow (2018-2020) – Beijing Institute of Technology 🏗
  • Associate Professor & Doctoral Supervisor (2020-Present) – Beijing Institute of Technology 📖

Summary Suitability

Dr. Qiyao Yu is an esteemed Associate Professor at the Beijing Institute of Technology, specializing in electrochemical analysis, nanomaterial synthesis, and energy storage systems. Holding a Ph.D. from Harbin Institute of Technology, Dr. Yu has made groundbreaking contributions to alkali-ion battery research, playing a pivotal role in advancing energy materials and battery technology. Her work has bridged theoretical insights with experimental validation, contributing to the development of high-performance and sustainable energy solutions. Her pioneering research and commitment to innovation make her an ideal candidate for the Best Researcher Award.

Professional Development  📚🔍

Dr. Qiyao Yu has significantly contributed to the field of energy storage and chemical engineering. She has authored 60+ SCI papers, including 44 as first/corresponding author, with 22 papers having an impact factor greater than 10. She has led 10 national projects, obtained over 20 patents, and actively contributes as an editorial board member for Battery Materials. Her research delves into the design of advanced battery materials, focusing on sodium/potassium-ion storage. Dr. Yu also plays a vital role in teaching, textbook compilation, and knowledge graph development for chemistry and energy storage courses, ensuring the next generation of researchers thrives. 🔋🧪

Research Focus

Dr. Qiyao Yu’s research primarily revolves around next-generation energy storage systems, particularly sodium-ion and potassium-ion batteries. Her work emphasizes developing high-performance electrode materials, electrolyte engineering, and interfacial chemistry to enhance battery stability and efficiency. By integrating metal-organic frameworks, carbon nanostructures, and polyanionic compounds, her research aims to revolutionize commercial sustainable energy storage solutions. Her pioneering studies on ion migration, cathode/anode materials, and electrolyte interfaces contribute significantly to battery advancements. Her focus on scalability and real-world applications positions her as a key innovator in the future of renewable energy technologies. 🔋🔄🌱

Awards & Honors 🏆🎖

  • Beijing Quality Course (Key) – Fundamentals of Organic Materials Chemistry (2021) 🏆
  • Ministry of Industry and Information Technology Planning Textbook – Fundamentals of Organic Chemistry of Energetic Materials (2021) 📚
  • Ministry of Education Teaching Reform Projects – Knowledge Graph for Organic Chemistry & Weapons Courses (2023) 🏛
  • Leader of 10+ National Projects, including the National Natural Science Foundation of China 🎯
  • Editorial Board MemberBattery Materials 📰

Publications Top Noted

  • Bamboo‐Like Hollow Tubes with MoS₂/N‐Doped‐C Interfaces Boost Potassium‐Ion Storage 📡 | Cited by: 283 | Year: 2018
  • Metallic Octahedral CoSe₂ Threaded by N‐Doped Carbon Nanotubes: A Flexible Framework for High‐Performance Potassium‐Ion Batteries 🔋 | Cited by: 230 | Year: 2018
  • Amorphous Carbon/Graphite Coupled Polyhedral Microframe with Fast Electronic Channel and Enhanced Ion Storage for Potassium-Ion Batteries ⚡ | Cited by: 112 | Year: 2021
  • N-Doped Carbon/Ultrathin 2D Metallic Cobalt Selenide Core/Sheath Flexible Framework Bridged by Chemical Bonds for High-Performance Potassium Storage 🔬 | Cited by: 105 | Year: 2020
  • High-Throughput Fabrication of 3D N-Doped Graphenic Framework Coupled with Fe₃C@Porous Graphite Carbon for Ultrastable Potassium Ion Storage 🏗️ | Cited by: 103 | Year: 2019
  • Unraveling the Intercorrelation Between Micro/Mesopores and K Migration Behavior in Hard Carbon 🧩 | Cited by: 92 | Year: 2022
  • Copper Oxide Nanoleaves Decorated Multi-Walled Carbon Nanotube as Platform for Glucose Sensing 🍃 | Cited by: 87 | Year: 2012
  • The Multi-Yolk/Shell Structure of FeP@Foam-Like Graphenic Scaffolds: Strong P–C Bonds and Electrolyte- and Binder-Optimization Boost Potassium Storage 🔄 | Cited by: 86 | Year: 2019