Marin Mihai | Processing and Manufacturing | Best Researcher Award

Marin Mihai | Processing and Manufacturing | Best Researcher Award

Marin Mihai at INCDIE ICPE-CA , Romania

Marin Mihai is a highly skilled metallurgical engineer with over 8 years of experience in cross-cultural national research projects, specializing in metallurgical and energy profiles. He holds a Bachelor’s degree in Material Science Engineering (2007-2011) and a Master’s degree in Management and Engineering of Metallic Materials Production (2011-2013), both from the Politehnica University of Bucharest. Additionally, he completed a scholarship at the Politehnica University of Patras, Greece, focusing on the production of geopolymers from industrial by-products.

Profile :

ORCID

Google Scholar

Education:

Marin Mihai completed his high school education at National College Spiru Haret in Ploiesti (2003-2007). He then pursued Bachelor Studies in the Faculty of Science and Materials Engineering at Politehnica University of Bucharest (2007-2011), followed by a Master Degree in Management and Engineering of Metallic Materials Production at the same institution (2011-2013). He was awarded a master scholarship at Politehnica University of Patras, Greece, where he conducted research on geopolymers from Red Mud and Rice Husk Ash under Prof. George N. Angelopoulos (February 2013 – August 2013).

Professional Journey:

Marin Mihai began his professional career as a Market Analyst at SC ASHBROOKE EXPERT SRL (July 2011 – January 2014). He then worked as a Metallurgical Engineering Technologist at SC ELECTROMAGNETICA SA (February 2014 – August 2015). Since 2015, he has been a Scientific Researcher at the National Institute for Research and Development in Electrical Engineering ICPE-CA, where he is responsible for various tasks including the development and quality assurance of electrical contacts and participation in project dissemination activities.

Honors & Awards:

Marin Mihai has been recognized for his contributions to the field with various patents, such as those on tungsten-copper-graphene oxide electrical contacts and tungsten-copper-nickel composite materials.

 

Publication Top Note

    1. Tungsten-Copper Composites for Arcing Contact Applications in High Voltage Circuit Breakers
      • Authors: MV Lungu, D Patroi, V Marinescu, S Mitrea, I Ion, M Marin, P Godeanu
      • Journal: Material Science Research India
      • Volume: 17, Issue 3
      • Pages: 8
      • Year: 2020
    2. Enhanced Metallic Targets Prepared by Spark Plasma Sintering for Sputtering Deposition of Protective Coatings
      • Authors: MV Lungu, E Enescu, D Tălpeanu, D Pătroi, V Marinescu, A Sobetkii, M Marin
      • Journal: Materials Research Express
      • Volume: 6, Issue 7
      • Article Number: 076565
      • Year: 2019
    3. Preparation and Study of the Optical, Electrical, and Dielectric Characteristics of Some Disc-Shaped Tin Dioxide-Based Varistors
      • Authors: MV Lungu, D Pătroi, V Marinescu, A Caramitu, M Marin, D Tălpeanu
      • Journal: Romanian Journal of Physics
      • Volume: 67
      • Article Number: 610
      • Year: 2022
    4. Recycled Polypropylene/Strontium Ferrite Polymer Composite Materials with Electromagnetic Shielding Properties
      • Authors: AR Caramitu, MV Lungu, RC Ciobanu, I Ion, M Marin, V Marinescu
      • Journal: Polymers
      • Volume: 16, Issue 8
      • Article Number: 1129
      • Year: 2024
    5. Tribological Behavior of Arcing Contact Materials Based on Copper Infiltrated Tungsten Composites
      • Authors: MV Lungu, E Enescu, M Lucaci, CD Cîrstea, F Grigore, S Mitrea, D Pătroi
      • Conference Proceedings: 9th International Conference “BALTTRIB 2018”
      • Volume: 1
      • Pages: 27-33
      • Year: 2017

    Strengths

    1. Innovative Research on Electrical Contacts:
      • Marin Mihai’s work on tungsten-copper composites for arcing contact applications in high voltage circuit breakers is pioneering. This research is crucial for enhancing the performance and reliability of high voltage circuit breakers, making it a significant contribution to the field of electrical engineering.
    2. Development of Advanced Materials:
      • His research on enhanced metallic targets prepared by spark plasma sintering for sputtering deposition of protective coatings showcases his ability to develop advanced materials with superior properties. This work has implications for improving the durability and efficiency of protective coatings in various industrial applications.
    3. Multidisciplinary Approach:
      • Mihai’s work spans across different areas of material science, including optical, electrical, and dielectric characteristics of tin dioxide-based varistors, and electromagnetic shielding properties of recycled polypropylene/strontium ferrite polymer composite materials. This multidisciplinary approach highlights his versatility and comprehensive understanding of material science.
    4. Contribution to Sustainable Materials:
      • His research on the preparation of geopolymers from industrial by-products such as Red Mud and Rice Husk Ash demonstrates his commitment to sustainability. This work not only provides solutions for waste management but also contributes to the development of eco-friendly materials.
    5. Recognized Expertise and Patents:
      • Mihai’s contributions to the field have been recognized through various patents, including those on tungsten-copper-graphene oxide electrical contacts and tungsten-copper-nickel composite materials. These patents signify his role as a leading innovator and researcher in material science.

    Areas for Improvement

    1. Expanded Collaboration:
      • Increasing collaboration with international researchers and institutions can further enhance the scope and impact of his research. This would provide broader perspectives and potentially lead to more groundbreaking discoveries.
    2. Publication in High-Impact Journals:
      • While Mihai has published in reputable journals, focusing on publishing in higher impact journals could increase the visibility and citation of his work. This would further establish his reputation in the global research community.
    3. Grant Acquisition:
      • Actively seeking and securing more research grants can provide additional resources for his projects. This can enable more extensive research and the ability to explore new areas within material science.
    4. Integration of Emerging Technologies:
      • Incorporating emerging technologies such as artificial intelligence and machine learning in his research methodologies could lead to new insights and more efficient research processes. This could also open new avenues for innovation in material science.
    5. Enhanced Communication Skills:
      • Improving public speaking and presentation skills can aid in effectively disseminating his research findings to a wider audience. This would also be beneficial for securing funding and collaborative opportunities.

    Conclusion

    Marin Mihai is a highly skilled and innovative metallurgical engineer with a robust portfolio of research that has made significant contributions to material science, particularly in the development of advanced materials and sustainable solutions. His strengths in multidisciplinary research, innovation, and recognized expertise have earned him the Best Researcher Award. However, by expanding his collaborations, aiming for high-impact publications, securing more grants, integrating emerging technologies, and enhancing his communication skills, he can further elevate his research impact and continue to be a leader in his field.