Mr. Issam Forsal | Materials Science | Best Researcher Award

Mr. Issam Forsal | Materials Science | Best Researcher Award

Mr. Issam Forsal , Université Sultan Moulay Slimane , Morocco.

Mr. Issam Forsal, is an Authorized Higher Education Professor and Head of the Process Engineering Department at the Higher School of Technology, Beni Mellal, Sultan Moulay Slimane University 🇲🇦. Specializing in Analytical Chemistry, he also serves as the Deputy Director of the Laboratory of Applied Engineering and Technology (LITA) 🏛️. Since 2015, he has been a teacher-researcher, contributing to materials science, electrochemical kinetics, and corrosion studies. His expertise extends to financial and economic management, having previously served as a project manager at the university 🎓💡.

Publication Profile

Scopus
Orcid

Education & Experience 🎓🔬

Education:
  • Specialization in Analytical Chemistry 🧪
  • Advanced training in Process Engineering and Materials Science ⚙️
Experience:
  • Since 2015: Professor & Researcher at Higher School of Technology, Beni Mellal 👨‍🏫
  • 2011-2016: Facilitator in Understanding Business Program (CLE) 🤝📈
  • 2010-2014: Project Manager at Sultan Moulay Slimane University (Economic & Financial Affairs) 💰🏛️
  • Expertise in budget management, audits, purchasing processes, and research project execution 📊

Summary Suitability

Mr. Issam Forsal is a distinguished researcher and educator specializing in Analytical Chemistry, with significant contributions to corrosion inhibition, electrochemical analysis, and eco-friendly material applications. As Deputy Director of the Laboratory of Applied Engineering and Technology (LITA) at Sultan Moulay Slimane University, Morocco, he has demonstrated exceptional leadership in advancing scientific research. His work on green corrosion inhibitors, published in high-impact journals, has provided innovative solutions for industrial applications, making him a strong contender for this prestigious award.

Professional Development 📚💼

Mr. Issam Forsal, has demonstrated strong professional growth in teaching, research, and university management. His academic contributions span materials science, electrochemical kinetics, and analytical chemistry 🧪⚛️. With a focus on corrosion, surface treatment, and experimental design, he integrates innovative methodologies into his teachings 📖✨. His leadership extends beyond the classroom, as he played a key role in university financial and project management, ensuring efficient resource allocation 💰📑. As a Deputy Director at LITA, he actively promotes technological advancements and fosters interdisciplinary research collaborations 🤝🔍.

Research Focus 🔬📑

Mr. Issam Forsal research primarily revolves around Analytical Chemistry and Process Engineering, with a strong emphasis on materials science, corrosion mechanisms, and electrochemical kinetics 🧪🛠️. His studies contribute to the development of innovative corrosion protection techniques and surface treatment methodologies ⚛️🔍. Additionally, he explores experimental design strategies for chemical analysis and industrial applications 📊⚙️. His work also intersects with environmental chemistry, focusing on sustainable and eco-friendly material processing techniques 🌱🔬. Through collaborations within LITA, he integrates cutting-edge analytical methods to enhance industrial and academic research outcomes 🚀📖.

Awards & Honors 🏆🎖️

🏅 Recognized for excellence in higher education teaching and research 👨‍🏫📚
🏅 Acknowledged for contributions to analytical chemistry and materials science 🧪⚛️
🏅 Honored for leadership in financial and economic management in academia 💰🏛️
🏅 Received multiple grants for research in electrochemical kinetics and surface treatment 🔬🔍
🏅 Appreciation for mentoring and academic program facilitation at Sultan Moulay Slimane University 🎓💡

Publication Top Notes

1️⃣ Investigation of Ziziphus Lotus Leaves Extract Corrosion Inhibitory Impact on Carbon Steel in a Molar Hydrochloric Acid Solution
📌 Portugaliae Electrochimica Acta, 2023 | Journal article
📄 DOI: 10.4152/pea.2023410203
📑 ISSN: 1647-1571
👥 Contributors: S. Lahmady, O. Anor, I. Forsal, et al.

2️⃣ Electrochemical Examination of an Eco-friendly Corrosion Inhibitor “Almond Flower Extract” for Carbon Steel in Acidic Medium (1 M HCl)
📌 Analytical and Bioanalytical Electrochemistry, 2022 | Journal article
📄 EID: 2-s2.0-85131576767
📑 ISSN: 2008-4226
👥 Contributors: S. Lahmady, O. Anor, I. Forsal, H. Hanin, K. Benbouya

3️⃣ An Experimental Investigation of a Date Seeds Hydro-acetonic Mixture Extract Inhibitor for Corrosion Inhibition of Carbon Steel in an Acidic Medium at High Temperatures
📌 Biointerface Research in Applied Chemistry, 2022-07-10 | Journal article
📄 DOI: 10.33263/briac133.271
📑 ISSN: 2069-5837

4️⃣ The Inhibition Action of Essential Oil of J. Juniperus Phoenicea on the Corrosion of Mild Steel in Acidic Media
📌 Portugaliae Electrochimica Acta, 2018 | Journal article
📄 DOI: 10.4152/pea.201802077
📄 EID: 2-s2.0-85040185247
👥 Contributors: Y. Elkhotfi, I. Forsal, E.M. Rakib, B. Mernari

5️⃣ Comparative Spectroscopic and Electrochemical Study of N-1 or N-2-Alkylated 4-Nitro and 7-Nitroindazoles
📌 Arabian Journal of Chemistry, 2017 | Journal article
📄 DOI: 10.1016/j.arabjc.2016.05.005
📄 EID: 2-s2.0-85006700464
👥 Contributors: G. Micheletti, A. Kouakou, C. Boga, P. Franchi, M. Calvaresi, L. Guadagnini, M. Lucarini, E.M. Rakib, D. Spinelli, D. Tonelli, et al.

Conclusion 🎖️

Mr. Issam Forsal  groundbreaking research in corrosion science, dedication to sustainable chemistry, and outstanding academic contributions make him a highly deserving candidate for the Best Researcher Award. His work has direct industrial applications, environmental impact, and scientific advancements, reflecting excellence in innovative research and academic leadership.

Rumyana Lazarova | Materials Science | Best Researcher Award

Rumyana Lazarova | Materials Science | Best Researcher Award

Prof. Dr. Rumyana Lazarova, Institute of Metal Science, Equipment and Technologies with Hydro- and Aerodynamics Centre, Bulgaria.

Chunxiu zhang | Materials Engineering | Best Researcher Award

Chunxiu zhang | Materials Engineering | Best Researcher Award

Prof. Dr. chunxiu zhang , Best Researcher Award , China.

📘Prof. Dr.Chunxiu Zhang is a professor and Chair of the Department of Polymer and Materials Engineering at the Beijing Institute of Graphic Communication. She earned her Ph.D. in Optical Engineering from Beijing Jiaotong University. Her research focuses on discotic liquid crystals, quasicrystal molecular design, molecular self-assembly, and optoelectronic applications. She also specializes in molecular simulation and computation. With extensive experience in advanced material synthesis and characterization, she has contributed significantly to the field of optoelectronic materials. Her work integrates theoretical and experimental approaches, driving innovation in next-generation materials for optical and electronic applications. 🔬✨.

Publication Profile

Orcid

Education & Experience

🎓 Ph.D. in Optical Engineering – Beijing Jiaotong University
👩‍🏫 Professor & Chair – Department of Polymer and Materials Engineering, Beijing Institute of Graphic Communication

Suitability Summary

Prof Dr.Chunxiu Zhang, a distinguished recipient of the Best Researcher Award, has made remarkable contributions to the field of Optical Engineering and Materials Science. With a Ph.D. in Optical Engineering from Beijing Jiaotong University, she currently serves as the Chair of the Department of Polymer and Materials Engineering at Beijing Institute of Graphic Communication. Her pioneering work spans multiple cutting-edge domains, including discotic liquid crystal and quasicrystal molecular design and synthesis, molecular self-assembly, and optoelectronic applications.

Professional Development

🔍 Prof.Dr.Chunxiu Zhang has continuously advanced her expertise in polymer and materials engineering, contributing extensively to the field of molecular self-assembly and optoelectronics. She has led various research projects, focusing on discotic liquid crystals and quasicrystal molecular design, driving advancements in display and sensor technologies. Her dedication to interdisciplinary studies, combining chemistry, physics, and engineering, has resulted in novel material innovations. Through molecular simulations and computational modeling, she optimizes materials for high-performance applications. As a mentor, she guides aspiring researchers, fostering academic growth and innovation in advanced materials. 📡🔬💡

Research Focus

🔬 Prof.Dr.Chunxiu Zhang research spans the cutting edge of optical and electronic materials, specializing in discotic liquid crystalsquasicrystal molecular design, and molecular self-assembly. Her studies aim to revolutionize display technologies, organic photovoltaics, and molecular electronics. By leveraging molecular simulations and computation, she refines the synthesis and properties of advanced materials, enhancing their optoelectronic applications. Her interdisciplinary approach bridges polymer science, nanotechnology, and materials engineering, paving the way for next-generation smart materials. Her contributions significantly impact the fields of photonic devices, flexible electronics, and self-assembling molecular architectures⚛️📡🔍

Awards & Honors

🏆 Outstanding Researcher Award – Recognized for excellence in polymer and materials engineering
🏅 Best Paper Award – Multiple accolades in international materials science conferences
🎖️ Innovation in Optoelectronics Award – Acknowledged for pioneering contributions to self-assembling molecular systems
📜 Research Grant Recipient – Secured major funding for advancing optoelectronic applications
💡 Keynote Speaker – Invited to prestigious global conferences in materials science and engineering

Publication Top Notes

  • 📄 “Macromolecular Rapid Communications” (2024-12-20) – Zhang, C. et al.
    🔗 DOI: 10.1002/marc.202400839
    📊 Cited by: N/A 🔬📈
  • 📄 “Circularly polarized luminescent liquid crystal materials with aggregation-induced emission functionality” (2023) – Zhang, C. et al.
    🔗 DOI: 10.37188/CJLCD.2023-0224
    📊 Cited by: N/A 💡🌈
  • 📄 “Statistical inference in EV linear model” (2023) – Zhang, C. et al.
    🔗 DOI: 10.1080/03610926.2021.1914096
    📊 Cited by: N/A 📊📉
  • 📄 “Progress on Frank-Kasper phases in soft matter” (2022) – Zhang, C. et al.
    🔗 DOI: 10.37188/CJLCD.2022-0281
    📊 Cited by: N/A 🏗️🔬
  • 📄 “The steric hindrance effect of bulky groups on the formation of columnar superlattices and optoelectronic properties of triphenylene-based discotic liquid crystals” (2022) – Zhang, C. et al.
    🔗 DOI: 10.1039/D2NJ01542K
    📊 Cited by: N/A ⚡📡.

 

Zecheng Zhuang | Materials | Best Researcher Award

Zecheng Zhuang | Materials | Best Researcher Award 

Dr. Zecheng Zhuang, Central South University, China.

Zecheng Zhuang is a dedicated tutor at Central South University with a strong background in mechanical engineering. He earned his Bachelor’s degree from Changchun University, a Master’s from Xi’an University of Science and Technology, and a Ph.D. from Central South University. His research focuses on structural integrity evaluation, corrosion, and fracture mechanics, contributing significantly to industrial applications. He has led multiple national and international research projects and holds over 15 patents. Zecheng is actively involved in prestigious conferences and serves as a member of key professional societies. His expertise strengthens collaborations between academia and industry. 🔬🏗️✨

Publivation Profiles

Scopus

Education and Experience

✅ Bachelor’s Degree – Mechanical Engineering & Automation, Changchun University
✅ Master’s Degree – Mechanical Theory & Design, Xi’an University of Science and Technology
✅ Ph.D. – Mechanical Engineering, Central South University
✅ Tutor – Central South University
✅ Research Leader – Multiple National & International Research Projects
✅ Industry Collaborations – Steel Enterprises, Corrosion-Resistant Materials

Suitability summary 

Dr. Zecheng Zhuang, a distinguished researcher and tutor at Central South University, is recognized for his groundbreaking contributions in mechanical engineering, corrosion-resistant materials, and structural integrity evaluation. His extensive research, spanning multiple national and international projects, has led to significant advancements in material characterization, corrosion protection, and fracture mechanics. With over 25 citations, numerous published patents, and high-impact journal publications, Zecheng Zhuang has played a pivotal role in bridging academia and industry. His leadership in corrosion-resistant steel research and collaborations with global institutions make him a deserving recipient of the Best Researcher Award.

Professional Development

Zecheng Zhuang has made remarkable strides in mechanical engineering, particularly in materials science and corrosion protection. His research is backed by prestigious grants, including the National Natural Science Foundation of China (NSFC) and UK Royal Society funding. As an active professional, he has published in high-impact journals like Scientific Reports and Case Studies in Construction Materials. He frequently participates in international conferences, sharing insights on corrosion resistance and structural integrity. Additionally, Zecheng has contributed to multiple patents and plays a key role in bridging academia with industry advancements, fostering innovation in material durability and protection. 🏗️🔬📖

Research Focus

Zecheng Zhuang specializes in structural integrity evaluation, corrosion resistance, materials characterization, and fracture mechanics. His work aims to develop advanced corrosion-resistant materials and innovative anti-corrosion technologies for industries like construction and marine engineering. Through his research, he explores the impact of environmental factors on metal degradation, helping industries improve material lifespan and safety. His studies also extend to testing relationships between residual stress and surface hardness in metal materials. His collaborations with steel enterprises and professional organizations further drive his mission to develop sustainable, high-performance materials for industrial applications. ⚙️🏗️🌍

Awards And Honours

🏆 National Graduation Thesis (Design) Sampling Expert
🏆 China Nonferrous Metal Think Tank Certification Expert
🏆 Member of the Chinese Society of Mechanics (CSTAM)
🏆 Member of China Materials Research Society
🏆 Member of the Institute of Corrosion, UK
🏆 Member of China Corrosion and Protection Society
🏆 Invited Speaker at Major International Conferences
🏆 Key Contributor to Corrosion-Resistant Steel Alliance

Publication Top Noted

🛠️ Response Characterization on the Microstructure, Mechanical, and Corrosion Behavior of Clad Rebars with Different Weld Materials 🔬⚙️🌊

Qinyuan Hong | Functional Materials | Best Researcher Award

Qinyuan Hong | Functional Materials | Best Researcher Award

Assist. Prof. Dr. Qinyuan Hong, Shanghai Jiao Tong University, China.

Dr. Qinyuan Hong 🏗️ is an Assistant Professor at the School of Environmental Science and Engineering, Shanghai Jiao Tong University 🌱. With a Ph.D. from the same institution and dual Bachelor’s degrees in Marine Science 🌊 and Economics 📈 from Xiamen University, his research focuses on mercury removal, multi-pollutant control, and environmental functional materials. He has published extensively in top-tier journals 📖 and contributed significantly to flue gas treatment and adsorption technology. Passionate about sustainability and innovation, Dr. Hong’s work advances cleaner industrial processes and environmental protection efforts worldwide. 🌍✨

Publivation Profiles

Orcid
Googlescholar

Education and Experience

  • Ph.D. in Environmental Science & Engineering (2018-2024) 🎓 – Shanghai Jiao Tong University 🏛️ (Advisor: Prof. Naiqiang Yan)
  • B.S. in Marine Science (2014-2018) 🌊 – Xiamen University 🏝️
  • B.S. in Economics (2015-2018) 📈 – Xiamen University 💰
  • Assistant Professor (2024-Present) 👨‍🏫 – School of Environmental Science and Engineering, Shanghai Jiao Tong University 🌱

Suitability summary 

Qinyuan Hong, an Assistant Professor at the School of Environmental Science and Engineering, Shanghai Jiao Tong University, has demonstrated exceptional research excellence in mercury removal technologies, flue gas treatment, and environmental functional materials. His groundbreaking contributions in heterogeneous catalytic and adsorption reactions have significantly advanced sustainable pollution control solutions. His prolific publication record in top-tier journals, innovative methodologies, and interdisciplinary approach establish him as a leading researcher in environmental science, making him a deserving recipient of the Best Researcher Award.

Professional Development

Dr. Qinyuan Hong is a leading researcher in environmental engineering, specializing in mercury removal from flue gas and wastewater 🌎💨. His work on sulfur-based materials and catalytic adsorption has led to groundbreaking advancements in pollution control 🏭. He has authored numerous peer-reviewed papers in prestigious journals 📚, contributing to sustainable environmental solutions. His interdisciplinary background in marine science and economics enhances his research perspective 🌊💰. As a dedicated academic, he collaborates with experts globally and mentors future environmental scientists 🌍🎓. His innovative approach drives impactful research for cleaner industrial practices and environmental conservation. 🌱✨

Research Focus

Dr. Hong’s research centers on mercury pollution control and environmental functional materials 🌱💡. His expertise includes developing advanced sulfur-based adsorbents for efficient heavy metal removal ⚛️ and exploring multi-pollutant control in flue gas treatment 🏭. He investigates heterogeneous catalytic reactions to enhance adsorption efficiency 🔬 and optimize industrial processes for sustainability 🌿. His work has significant implications for cleaner energy production, mitigating environmental hazards, and improving air and water quality worldwide 🌎. With a passion for innovation, Dr. Hong’s research contributes to the global effort in combating industrial pollution and fostering a greener future. 🌿💚

Publication Top Noted

📄 Enhancing the catalytic oxidation of elemental mercury and suppressing sulfur-toxic adsorption sites from SO₂-containing gas in Mn-SnS₂ – Journal of Hazardous Materials (2020) 🧪🔥 Cited by: 54

📄 Gaseous mercury capture using supported CuSₓ on layered double hydroxides from SO₂-rich flue gas – Chemical Engineering Journal (2020) 🌫️⚙️ Cited by: 41

📄 Shell-thickness-induced spontaneous inward migration of mercury in porous ZnO@CuS for gaseous mercury immobilization – Chemical Engineering Journal (2021) 🏗️🔬 Cited by: 35

📄 Heterogeneous reaction mechanisms and functional materials for elemental mercury removal from industrial flue gas – ACS ES&T Engineering (2021) 🔍⚡ Cited by: 34

📄 Insight into the interfacial stability and reaction mechanism between gaseous mercury and chalcogen-based sorbents in SO₂-containing flue gas – Journal of Colloid and Interface Science (2020) 🧫🔄 Cited by: 31

📄 Regulation of the Sulfur Environment in Clusters to Construct a Mn–Sn₂S₆ Framework for Mercury Bonding – Environmental Science & Technology (2022) 🌍🔗 Cited by: 29

📄 Stepwise Ions Incorporation Method for Continuously Activating PbS to Recover Mercury from Hg⁰-Rich Flue Gas – Environmental Science & Technology (2020) 🔬♻️ Cited by: 29

📄 Metastable Facet-Controlled Cu₂WS₄ Single Crystals with Enhanced Adsorption Activity for Gaseous Elemental Mercury – Environmental Science & Technology (2021) 🏭🧪 Cited by: 25

📄 Zinc concentrate internal circulation technology for elemental mercury recovery from zinc smelting flue gas – Fuel (2020) ⚙️🔥 Cited by: 23

Bahadır Kopçasız | Material Science | Best Researcher Award

Bahadır Kopçasız | Material Science | Best Researcher Award

Assist. Prof. Dr. Bahadır Kopçasız, Istanbul Gelisim University, Turkey.

Publication Profile

Orcid

Education and Experience

  • B.Sc. in Mathematics (Karadeniz Technical University, 2015) 🧮
  • M.Sc. in Applied Mathematics (Yeditepe University, 2018) 🧑‍🔬
  • Ph.D. in Applied Mathematics (Bursa Uludağ University, 2024) 🎓
  • Assistant Professor at Istanbul Gelişim University (Current) 🏫
  • Published extensively in SCI-Expanded journals, including Q1 and Q2 categories 📝
  • Frequent presenter at international scientific conferences 🌍

Summary Suitability For the award

Dr. Bahadır Kopçasız, a distinguished academic and researcher at İstanbul Gelişim University, is a leading figure in applied mathematics, particularly in nonlinear dynamics, optical solitons, and fractional-order equations. With a robust academic background, including a Ph.D. from Bursa Uludağ University, Dr. Kopçasız has consistently demonstrated exceptional research capabilities, making him an ideal candidate for the prestigious Best Researcher Award. His contributions have not only advanced the field of mathematical physics but also set a benchmark for innovation and scholarly excellence.

Professional Development

Dr. Bahadır Kopçasız actively engages in mathematical research, focusing on applied and computational mathematics with a special interest in nonlinear Schrödinger equations, soliton dynamics, and fractional-order systems. He has collaborated on cutting-edge projects, showcasing his ability to derive novel solutions using advanced mathematical frameworks. By exploring multi-wave interactions, chaotic behaviors, and bifurcation analyses, his work has paved the way for new insights into optical and geophysical systems. Additionally, Dr. Kopçasız is committed to mentoring aspiring mathematicians, contributing to the global scientific community with impactful research and presentations. 🔬🌟

Research Focus

Publication Top Notes

  • 📖 Exploration of Soliton Solutions for the Kaup–Newell Model Using Two Integration Schemes in Mathematical Physics (2025)
  • 📖 Unveiling New Exact Solutions of the Complex-Coupled Kuralay System Using the Generalized Riccati Equation Mapping Method (2024)  🌟
  • Contributors: Bahadır Kopçasız
  • 📖 Inquisition of Optical Soliton Structure and Qualitative Analysis for the Complex-Coupled Kuralay System (2024) 🌟
  • 📖 Innovative Integration Technologies for Kaup-Newell Model: Sub-Picosecond Optical Pulses in Birefringent Fibers (2024)
  • 📖 Solitonic Structures and Chaotic Behavior in the Geophysical Korteweg–de Vries Equation: A μ-Symmetry and g′-Expansion Approach (2024)
  • 📖 μ-Symmetries and μ-Conservation Laws for the Nonlinear Dispersive Modified Benjamin-Bona-Mahony Equation (2023) 🌟
  • 📖 Analytical Soliton Solutions of the Fractional Order Dual-Mode Nonlinear Schrödinger Equation with Time-Space Conformable Sense by Some Procedures (2023) – 🌟

 

Julio Corredoira Vázquez | Design of Materials and Components | Best Researcher Award

Dr. Julio Corredoira Vázquez | Design of Materials and Components | Best Researcher Award

Doctorate at USC, Spain

Dr. Julio Corredoira Vázquez is a distinguished Postdoctoral Researcher at Universidade de Santiago de Compostela (USC), Spain. His research primarily focuses on lanthanoid ion coordination chemistry, single molecule magnets (SMMs), and luminescent thermometry. With a solid background in chemistry and extensive experience in both synthesis and characterization, Dr. Corredoira Vázquez is known for his contributions to the development of novel luminescent materials and magnetic systems.

 

Profile

Scopus Profile

ORCID Profile

Author Metrics

Dr. Corredoira Vázquez has published 19 papers in international peer-reviewed journals, with 15 in Q1 journals and 3 in the first decile according to JCR. His work has been cited 205 times, resulting in an h-index of 8. His research contributions are recognized for their impact in the fields of coordination chemistry and molecular magnetism.

Education

Dr. Corredoira Vázquez completed his Bachelor in Chemistry, Master in Chemistry, and PhD in Chemistry at Universidade de Santiago de Compostela (USC), Spain. He graduated in 2014, 2016, and 2022 respectively, with a European PhD mention and was honored with an Extraordinary PhD Award expected in 2024.

Research Focus

Dr. Corredoira Vázquez’s research focuses on the design and application of lanthanoid complexes, including their use as single molecule magnets (SMMs) and in luminescent thermometry. His work involves the synthesis and structural characterization of novel magnetic materials and the development of innovative methods for temperature sensing.

Professional Journey

Beginning his research career in 2016 as a PhD student, Dr. Corredoira Vázquez worked extensively on lanthanoid ion coordination chemistry. His doctoral research, conducted at USC and including a research stay at the University of Sussex under Prof. R. Layfield, led to significant publications. Since July 2022, he has held a Postdoctoral Researcher position at USC, where he is furthering his research in luminescent SMMs and has been involved in a research stay abroad under Prof. Luis D. Carlos.

Honors & Awards

Dr. Corredoira Vázquez has been recognized with the Extraordinary PhD Award, highlighting his exceptional contributions to the field. His research has been published in high-impact journals and has received substantial recognition within the scientific community.

 

Research Timeline

Dr. Corredoira Vázquez began his research career in 2016 with a focus on lanthanoid ion coordination chemistry. He completed his PhD in 2022 and received the Extraordinary PhD Award. He has been a Postdoctoral Researcher since 2022, with ongoing research in luminescent SMMs and an upcoming return to USC to continue his work.

Collaborations and Projects

Dr. Corredoira Vázquez has collaborated with prominent researchers on national and international projects. Notable collaborations include his involvement in the research project Materiales magnéticos y/o quiroópticos basados en moléculas imán y sistemas poliméricos metal-orgánicos (PGC2018-102052-B-C21), led by Enrique Colacio Rodríguez and Antonio Rodríguez Diéguez, which has advanced the field of molecular magnetism and related applications.

Publications

Strength for the Best Researcher Award

  1. Innovative Research Focus
    Dr. Julio Corredoira Vázquez’s research on lanthanoid ion coordination chemistry, single molecule magnets (SMMs), and luminescent thermometry is cutting-edge. His work in developing novel luminescent materials and magnetic systems is highly relevant and contributes significantly to the field.
  2. High-Impact Publications
    His papers have been published in prestigious journals such as Inorganic Chemistry Frontiers, Journal of Rare Earths, and Applied Organometallic Chemistry. These publications highlight his role in advancing knowledge in his research areas.
  3. Strong Citation Metrics
    With 205 citations and an h-index of 8, Dr. Corredoira Vázquez’s research is well-recognized and influential within the scientific community. These metrics underscore the impact of his work.
  4. Awards and Recognitions
    The Extraordinary PhD Award signifies his exceptional contributions and dedication to his research field. Such accolades enhance his credibility and reflect the high quality of his work.
  5. Collaborative Research
    His involvement in significant national and international research projects, including those with leading scientists, indicates his strong collaborative skills and integration into the global research community.

Areas for Improvement

  1. Broadening Research Topics
    While his focus on lanthanoid ions and SMMs is specialized, exploring additional related fields or interdisciplinary research could broaden his impact and open up new avenues for exploration.
  2. Increasing Research Output
    Publishing more papers, especially in higher impact journals, could further enhance his profile. Diversifying his publication venues could also increase visibility in different scientific communities.
  3. Expanding Collaborative Networks
    Building collaborations with researchers outside his current network could provide new perspectives and opportunities. Expanding international collaborations could further enhance his research scope and impact.
  4. Securing Funding
    Actively seeking and securing more research grants and funding opportunities could provide the resources needed for larger and more ambitious projects, enhancing the scope and depth of his research.
  5. Enhancing Public Engagement
    Increasing efforts to communicate research findings to a broader audience, including through popular science channels or public talks, could improve public understanding of his work and its relevance.

Conclusion

Dr. Julio Corredoira Vázquez is a distinguished researcher with a robust track record in lanthanoid ion coordination chemistry and luminescent thermometry. His innovative research, high-impact publications, and strong citation metrics reflect his significant contributions to the field. However, there are opportunities for further growth, including broadening his research topics, increasing his research output, expanding his collaborative networks, securing additional funding, and enhancing public engagement. Addressing these areas for improvement could further solidify his position as a leading scientist and enhance the impact of his work on a global scale.

Xiuhan Li | Design of Materials and Components | Best Researcher Award

Prof Xiuhan Li | Design of Materials and Components | Best Researcher Award

 Professor at Beijing Jiaotong University , China

Professor Xiuhan Li is a distinguished academic in the School of Electronics and Information Engineering at Beijing Jiaotong University. Her expertise lies in micro/nano devices, energy harvesting, and implantable biomedical microdevices, with a particular focus on wireless energy transfer systems. Her innovative research has garnered significant recognition, including numerous publications and patents.

Profile

Scopus Profile

Author Metrics

Professor Li has achieved notable scholarly impact with over 30 peer-reviewed publications in prestigious journals such as Advanced Materials, ACS Nano, and Nano Energy. Her work has amassed more than 1000 citations, reflecting her substantial influence in her research areas. Additionally, she holds 6 invention patents and has published 36 journal articles indexed by SCI and Scopus.

Education

Professor Li earned her Ph.D. in Microelectronics and Solid State Electronics from Peking University in 2006. Her academic foundation laid the groundwork for her subsequent research in micro/nano technologies and energy harvesting.

Research Focus

Professor Li’s research centers on micro/nano devices, with a significant focus on triboelectric nanogenerators, self-powered sensors, and deep learning applications. Her work includes the development of advanced wearable sensors and wireless energy transfer systems, which push the boundaries of current technology.

Professional Journey

Professor Li’s career includes directing and participating in numerous research projects funded by the Ministry of Science and Technology and the National Natural Science Foundation of China (NSFC). She has collaborated extensively with prestigious institutions like Peking University and the Beijing Institute of Nano Energy and Systems.

Honors & Awards

Professor Li’s groundbreaking contributions have been recognized through various awards and accolades. Her research excellence and innovative solutions in electronics and information engineering make her a leading figure in her field.

Publications Noted & Contributions

Professor Li’s notable work includes the development of a high-performance intelligent triboelectric wearable sensor (HITWS), which significantly improves upon previous technologies in terms of signal-to-noise ratio, sensitivity, and power density. Her research demonstrates a high accuracy in object recognition when combined with advanced deep learning models.

Research Timeline

Professor Li’s research timeline highlights her progression from her doctoral studies at Peking University to her current role at Beijing Jiaotong University. Her ongoing projects and contributions have consistently advanced the field of electronics and information engineering, with a focus on innovative sensor technologies and energy harvesting systems.

Collaborations and Projects

Professor Li maintains active collaborations with leading institutions such as Peking University and the Beijing Institute of Nano Energy and Systems. These partnerships facilitate the advancement of her research projects, including contributions to triboelectric nanogenerators and self-powered sensors.

 

Publications

  1. “Mica/Nylon Composite Nanofiber Film-Based Wearable Triboelectric Sensor for Object Recognition”
    • Authors: Yang, J., Hong, K., Hao, Y., Zhang, C., Li, X.
    • Journal: Nano Energy
    • Year: 2024
    • Volume: 129
    • Article Number: 110056
  2. “Self-Powered Intelligent Liquid Crystal Attenuator for Metasurface Real-Time Modulating”
    • Authors: Niu, Z., Yang, J., Yu, G., Mao, X., Li, X.
    • Journal: Nano Energy
    • Year: 2024
    • Volume: 129
    • Article Number: 109991
  3. “Self-Powered Terahertz Modulators Based on Metamaterials, Liquid Crystals, and Triboelectric Nanogenerators”
    • Authors: Hao, Y., Niu, Z., Yang, J., Zhang, C., Li, X.
    • Journal: ACS Applied Materials and Interfaces
    • Year: 2024
    • Volume: 16
    • Issue: 25
    • Pages: 32249–32258
  4. “Triboelectric Nanogenerator for Self-Powered Musical Instrument Sensing Based on the Ion-Electricfield-Migration Nylon/Na2SO4 Nanofiber Film”
    • Authors: Zhang, C., Liu, H., Hao, Y., Wang, J., Li, X.
    • Journal: Chemical Engineering Journal
    • Year: 2024
    • Volume: 489
    • Article Number: 151274
  5. “High-Performance Flexible Wearable Triboelectric Nanogenerator Sensor by β-Phase Polyvinylidene Fluoride Polarization”
    • This publication’s details are incomplete as you haven’t provided the full citation. If you have more specific information or a request for further details, please let me know

Strength for Best Researcher Award

        1. Innovative Research Focus: Professor Li’s research in triboelectric nanogenerators and self-powered sensors demonstrates cutting-edge advancements and practical applications in micro/nano devices.
        2. High Scholarly Impact: With over 1000 citations and numerous publications in top-tier journals like Advanced Materials and Nano Energy, her work has made a significant impact on her field.
        3. Extensive Patenting: Holding 6 invention patents underscores her ability to translate research into practical, innovative solutions.
        4. Successful Collaborations: Partnerships with prestigious institutions like Peking University and the Beijing Institute of Nano Energy and Systems enhance the depth and reach of her research.
        5. Recognition and Awards: Her innovative contributions have been acknowledged through various honors and awards, highlighting her excellence and leadership in electronics and information engineering.

        Areas for Improvement

        1. Broader Research Applications: Expanding research to explore applications beyond wearable sensors and energy harvesting could diversify her impact.
        2. Interdisciplinary Research: Integrating more interdisciplinary approaches could open new avenues for innovation and application.
        3. Enhanced Public Engagement: Increasing outreach efforts to communicate the significance and potential of her work to a broader audience may enhance public understanding and support.
        4. Expansion of International Collaborations: Broadening international research partnerships could offer new perspectives and opportunities for collaboration.
        5. Increased Focus on Emerging Technologies: Staying abreast of and incorporating emerging technologies could further elevate her research impact and relevance.

        Conclusion

        Professor Xiuhan Li’s distinguished career is marked by groundbreaking research in micro/nano devices and energy harvesting, demonstrated by her high citation count and numerous prestigious publications. Her significant patent portfolio and successful collaborations underscore her innovative contributions and leadership in her field. While her research has achieved remarkable success, there are opportunities to further broaden application areas, enhance interdisciplinary approaches, and expand both public and international engagement. Embracing these opportunities will likely amplify her impact and foster continued excellence in her pioneering work.