Yong Yu | Materials | Best Researcher Award

Yong Yu | Materials | Best Researcher Award

Dr. Yong Yu , Qingdao University of Technology , China.

Dr. Yong Yu is a dedicated researcher in civil engineering at the School of Civil Engineering, Qingdao University of Technology, China. His expertise lies in high-performance concrete, crumb rubber concrete, and steam-cured concrete. With a strong academic background and a passion for sustainable materials, Dr. Yu has contributed extensively to advancing concrete technology. His research aims to enhance durability, eco-friendliness, and structural performance in construction. He actively collaborates with academia and industry to implement innovative solutions in civil engineering. 📚🔬🏢

Publication Profile

Orcid
Scopus

Education & Experience 📖👷

  • Ph.D. in Civil Engineering – Specialized in advanced concrete materials 🎓🏗️
  • Professor at Qingdao University of Technology – Leading research in sustainable concrete 🏫🔬
  • Industry Collaboration – Works with construction firms on eco-friendly materials 🤝🏢
  • Published Researcher – Numerous papers on high-performance and rubberized concrete 📄📊

Suitability summary

Dr. Yong Yu, a distinguished researcher at the School of Civil Engineering, Qingdao University of Technology, China, is an exceptional candidate for the Best Researcher Award. His groundbreaking contributions to high-performance concrete, crumb rubber concrete, and steam-cured concrete have significantly advanced sustainable and durable construction materials. His expertise in optimizing concrete properties for enhanced strength, durability, and eco-friendliness makes him a leading innovator in civil engineering. 📚🌍

Professional Development 🔬🏗️

Dr. Yong Yu actively engages in cutting-edge research on sustainable concrete materials. His contributions focus on enhancing durability, strength, and environmental benefits in construction. He regularly publishes in top-tier journals, presents at international conferences, and collaborates with industry experts to develop innovative solutions. As a mentor, he supervises students and researchers in civil engineering, guiding them towards practical and impactful research. His work not only advances theoretical knowledge but also influences real-world construction practices, ensuring a balance between strength and sustainability🌍🏗️📚

Research Focus 🔍🏢

Dr. Yong Yu’s research is centered on developing high-performance, durable, and eco-friendly concrete materials. His focus includes:

  • High-Performance Concrete (HPC): Enhancing durability, strength, and resistance to extreme conditions 🏗️💪
  • Crumb Rubber Concrete: Utilizing recycled rubber to improve flexibility and sustainability 🌱♻️
  • Steam-Cured Concrete: Optimizing rapid curing processes for efficient construction 🏭🔥

His studies contribute to reducing carbon footprints, improving material longevity, and promoting sustainable construction worldwide. 🌍🔬🏢

Awards & Honors 🏆🎖️

  • Outstanding Researcher Award – Recognized for contributions to concrete innovation 🏅🏗️
  • Best Paper Award – Published groundbreaking research in material science 📜🏆
  • Excellence in Teaching Award – Acknowledged for mentoring and academic leadership 🎓👨‍🏫
  • Industry Innovation Recognition – Collaborated on sustainable construction projects 🏢♻️

Publication Top Notes

  • 🧪 “Molecular and structural basis of the dual regulation of the polycystin-2 ion channel by small-molecule ligands” (2024) – Proceedings of the National Academy of Sciences
  • 🧬 “Structural basis for human Cav1.2 inhibition by multiple drugs and the neurotoxin calciseptine” (2023) – Cell
  • 🔬 “The diverse effects of pathogenic point mutations on ion channel activity of a gain-of-function polycystin-2” (2023) – Journal of Biological Chemistry
  • 🧫 “Structures of the R-type human Cav2.3 channel reveal conformational crosstalk of the intracellular segments” (2022) – Nature Communications
  • 🧩 “Structural basis for the severe adverse interaction of sofosbuvir and amiodarone on L-type Cav channels” (2022) – Cell
  • 🧪 “The roles of two extracellular loops in proton sensing and permeation in human Otop1 channel” (2022) – Communications Biology
  • 🧬 “The ion channel TRPM7 regulates zinc depletion-induced MDMX degradation” (2021) – Journal of Biological Chemistry

 

Rutuja Uday | Nanomaterials | Best Researcher Award

Rutuja Uday | Nanomaterials | Best Researcher Award

Ms. Rutuja Amate , Best Researcher Award , India.

Ms. Rutuja Uday Amate is a Postdoctoral Research Scholar at the Optoelectronic Devices Lab, School of Chemical Engineering, Yeungnam University, South Korea 🇰🇷. She specializes in advanced functional materials for electrochromic displays, energy storage devices, and electrocatalysis ⚡🔬. She earned her Ph.D. in Chemical Engineering (2024) from Yeungnam University, focusing on electrochromic energy storage in Nb₂O₅-based materials. With a strong background in nanoscience and nanotechnology, she has contributed significantly to material engineering, achieving multiple publications  and novel developments in nanomaterials. Her research expertise extends to thin film physics, energy conversion, and hybrid supercapacitors.

Publication Profile

Orcid

Education & Experience 🎓🛠

📌 Postdoctoral Researcher (2024-Present) – Yeungnam University, South Korea 🇰🇷
🔹 Research on electrochromic displays, energy storage, and electrocatalysis ⚡

📌 Ph.D. in Chemical Engineering (2021-2024) – Yeungnam University, South Korea 🎓
🔹 Thesis: Electrochromic energy storage using Nb₂O₅ with material engineering 🏭
🔹 Developed novel materials like Nb₂O₅, WO₃, and multinary composites

📌 M.Sc. in Nanoscience & Nanotechnology (2018-2020) – Shivaji University, India 🇮🇳
🔹 Research on oxide & chalcogenide materials for resistive switching & photovoltaic devices 🌞

📌 B.Sc. in Nanoscience & Nanotechnology (2015-2018) – Shivaji University, India 🎓
🔹 Studied solid-state physics, quantum mechanics, nanomaterial synthesis, and energy devices 🔬

Suitability Summary

Ms. Rutuja Uday Amate, a Postdoctoral Research Scholar at Yeungnam University, South Korea, stands as a strong candidate for the Best Researcher Award due to her outstanding contributions in electrochromic displays, energy storage devices, and electrocatalysis. With an impressive research trajectory spanning across nanomaterials and electrochemical devices, she has demonstrated excellence in material engineering, charge storage kinetics, and functional thin films for sustainable energy applications.

Professional Development & Skills 🏆🧪

Ms. Rutuja Amate is an innovative researcher specializing in nanomaterials for energy applications ⚡. She has expertise in thin-film physics, electrochromic energy storage, hybrid supercapacitors, and electrocatalysis for hydrogen production 🚀. Her work involves designing novel nanostructures to enhance electrical, optical, and chemical properties. She has hands-on experience in micro/nanoelectronics fabrication, metal oxides, 2D-TMDs heterojunction thin films, and memory devices 💡. Her research aims to develop high-performance energy solutions through advanced material engineering. Passionate about sustainable energy, she actively explores new methodologies for energy conversion and storage technologies 🔋.

Research Focus 🔬⚡

Ms. Rutuja Amate’s research revolves around electrochromic energy storage, thin-film physics, and advanced nanomaterials 🏭. Her work enhances energy efficiency by engineering metal oxides and 2D materials for hybrid supercapacitors, electrocatalysts, and charge storage applications ⚙️. She explores intervalence charge transfer mechanisms, bilayer deposition effects, and multinary composites to optimize electrochemical performance. Her focus on nanoelectronics fabrication enables innovation in memory devices and resistive switching technologies 📡. By developing cutting-edge materials, she contributes to energy-efficient displays, hydrogen production, and sustainable energy storage solutions for the future 🌱🔋.

Awards & Honors 🏅

🏆 Achieved 09+ publications as a postdoctoral researcher 📚
🏆 Published 14+ research papers during Ph.D. tenure in Chemical Engineering ✍️
🏆 Recognized for novel material developments in electrochromic & energy storage research 🔬
🏆 Developed Nb₂O₅, WO₃, NbOPO₄, and hybrid composites for advanced energy devices ⚡
🏆 Contributed to intervalence charge transfer studies improving electrochemical performance ⚙️
🏆 Presented research at multiple international conferences on nanoscience & energy technologies 🌍.

Publication Top Notes

  • Double-Layered Nano-Composite of Copper-Manganese Oxide/rGO-Palladium for Asymmetric Supercapacitors” (February 2025) – 15 reads 📘
  • “Nanospheres of TiO₂/MoS₂ Composites Synthesized via Two-Step Chemical Route for High-Performance Supercapacitor Electrodes” (January 2025) – 4 reads 📘
  • “Synergistic Effects of Niobium Phosphate/Tungsten Oxide Core-Shell Nanocomposites for Asymmetric Supercapacitor” (December 2024) – 6 reads 📘
  • “Effect of Annealing Temperature on Morphology and Electrochromic Performance of Electrodeposited WO₃ Thin Films” (November 2024) – 29 reads 📘
  • “Molybdenum-Modified Niobium Oxide: A Pathway to Superior Electrochromic Materials for Smart Windows and Displays” (October 2024) – 10 reads 📘
  • “Synergistic Design of Processable Nb₂O₅-TiO₂ Bilayer Nanoarchitectonics: Enabling High Coloration Efficiency and Superior Stability in Dual-Band Electrochromic Energy Storage” (September 2024) – 5 reads 📘
  • “Exploring the Electrochemical Performance of Niobium Phosphate Electrode for Supercapacitor Application” (August 2023) – 8 reads 📘
  • “Bi-Functional Electrochromic Supercapacitor Based on Hydrothermal-Grown 3D Nb₂O₅ Nanospheres” (May 2023) – 12 reads 📘
  • “Improved Electrochromic Performance of Potentiostatically Electrodeposited Nanogranular WO₃ Thin Films” (February 2023) – 20 reads 📘
  • “Bipolar-Resistive Switching and Memristive Properties of Solution-Processable Cobalt Oxide Nanoparticles” (March 2020) – 25 reads 📘

 

Art Anthony Munio | Carbon Nanostructures | Best Researcher Award

Art Anthony Munio | Carbon Nanostructures | Best Researcher Award

Mr. Art Anthony Munio, Jose Rizal Memorial State University – Tampilisan Campus, Philippines.

Publication profile

Scopus

Orcid

Education & Experience

  • Doctor of Philosophy in Physics
    Mindanao State University – Iligan Institute of Technology (August 2021 – July 2024)
    Dissertation: Application of density functional theory in systems of carbon nanostructures for water purification and cement composites. 🎓
  • Master of Science in Physics
    Mindanao State University – Iligan Institute of Technology (August 2019 – June 2021)
    Thesis: First-principles insights on bonding mechanisms of carbon nanotubes. ⚛️
  • Bachelor of Science in Physics
    Western Mindanao State University (June 2014 – March 2018)
    Thesis: Rotational dynamics of satellites in various orbits. 🌍
  • College Instructor & Research Project Leader
    Jose Rizal Memorial State University, Tampilisan, Zamboanga del Norte. 👨‍🏫
  • Part-time Instructor
    Western Mindanao State University, Zamboanga City. 🏫

Suitability for Best Researcher Award

Mr. Art Anthony Z. Munio is a remarkable candidate for the Best Researcher Award, whose academic background and research contributions showcase a profound dedication to advancing scientific knowledge in the field of nanotechnology and physics. His cutting-edge work involving quantum chemical calculations, nanostructures, and density functional theory (DFT) has significantly impacted applications such as water purification and cement composites. With a growing list of prestigious publications indexed in Scopus and Web of Science, Mr. Munio’s research has already gained substantial recognition in the scientific community.

Professional Development (💼🔬)

Research Focus 🧫🧬

Awards and Honors (🏆🎖️)

  • Second Level Eligibility 🎖️
  • Research Project Funding from the Philippine Council for Industry, Energy, and Emerging Technology Research and Development. 💰
  • Recognition for Multiple Publications in esteemed journals indexed in Scopus and Web of Science. 📰
Publication Top Notes
  • On the nanoscale interface, electronic structure, and optical properties of nanocarbon-reinforced calcium silicate hydrates (Cited by: 0, 2024) 📄
  • On the adsorption of arsenic on single-walled carbon nanotube and Fe-doped single-walled carbon nanotube: a quantum chemical study (Cited by: 1, 2024) ⚗️
  • A First-Principles Study on the Chemisorption of Arsenic on the Cellulose Biopolymer (Cited by: 3, 2023) 🧪
  • Exploring the Functionality of Cellulose Biopolymer as Carbon Nanotube Composite and Heavy Metals Adsorbent Material: Insights from First-Principles Calculations (Cited by: 2, 2023) 🌱
  • A Density Functional Theory Study on the Interaction of Cellulose Biopolymer and Atomic Arsenic (Cited by: 0, 2023) 🔬
  • Electronic structures and dielectric function of (5, 5) CNT-C2H4O system: A first-principles study on the detection capability of CNT for gas sensing applications (Cited by: 0, 2023) 🚀
  • First-Principles Insights into the Acetic Acid Sensing Capability of the C39N Armchair Nanotube (Cited by: 0, 2023) 🍏
  • Non-Covalent Functionalization of Biphenylene Network by Cellulose and Nylon-6: A First-Principles Study (Cited by: 4, 2023) 🌐
Conclusion

Mr. Art Anthony Z. Munio’s impressive academic achievements, groundbreaking research contributions, and leadership roles in both academia and innovative research projects make him an outstanding candidate for the Best Researcher Award. His work is not only expanding the frontiers of knowledge in physics and material science but also addressing vital environmental and industrial issues through practical applications of nanotechnology. Awarding Mr. Munio this prestigious recognition will acknowledge his exceptional contributions and inspire further advancements in this critical field.