Dr. Kai Xiong | Material | Best Researcher Award

Dr. Kai Xiong | Material | Best Researcher Award

Dr. Kai Xiong , Yunnan University , China.

Dr. Kai Xiong, Ph.D., is a Professor at Yunnan University and a Master Supervisor. A high-level introduced young talent in Yunnan Province and a core faculty member at Donglu, he specializes in multi-scale simulation and the design of rare and high-entropy materials. He has led major research projects, including one National Natural Science Foundation of China (NSFC) project and multiple provincial programs. With over 100 published papers, five software copyrights, and a textbook, he has significantly contributed to material science. His work bridges fundamental research with industrial applications, enhancing innovation in non-ferrous metal materials. 🔬📖

Publication Profile

Scopus
Orcid

Education & Experience 🎓🔬

  • Ph.D. in Materials Science, specialized in multi-scale simulation and material design 🏗️
  • Professor, Yunnan University, mentoring master’s students and conducting advanced research 📚
  • High-level Young Talent, recognized by Yunnan Province for academic excellence 🏅
  • Young & Middle-Aged Backbone Teacher, contributing to scientific advancement at Yunnan University 👨‍🏫
  • Principal Investigator, leading multiple national and provincial research projects 🔬
  • Industry Collaborations, working on enterprise-sponsored research for material innovation ⚙️

Suitability Summmary

Dr. Kai Xiong, a distinguished Professor at Yunnan University, is an ideal candidate for the Best Researcher Award due to his exceptional contributions to material science and engineering. As a high-level introduced young talent in Yunnan Province and a key faculty member at Yunnan University, he has significantly advanced the field of multi-scale simulation and the design of rare and precious non-ferrous metals and high-entropy materials. His research has had a profound impact on the development of next-generation materials, contributing both theoretically and practically to the field.

Professional Development 🚀

Dr. Kai Xiong has made remarkable strides in computational materials science, focusing on multi-scale simulation and the development of advanced non-ferrous and high-entropy materials. His expertise spans theoretical modeling and experimental validation, enabling breakthrough discoveries in material performance enhancement. He actively mentors students, contributes to industrial applications, and collaborates on national and provincial projects. His research has yielded patented innovations, software tools, and a specialized textbook. Through continuous learning and interdisciplinary collaboration, he pushes the boundaries of material science, bridging academia and industry to drive technological advancements in rare and precious metals. 🔍🔧📘

Research Focus 🔬💡

Dr. Kai Xiong specializes in the multi-scale simulation and design of rare and precious non-ferrous metals and high-entropy materials. His work integrates computational modeling, experimental validation, and industrial applications to enhance material properties. Key areas include atomic-level material behavior analysis, nanostructured alloy development, and mechanical and thermal stability optimization. His research plays a vital role in advanced manufacturing, aerospace, and electronic applications, improving material efficiency and sustainability. With a strong foundation in applied physics, chemistry, and engineering, he contributes to cutting-edge advancements that redefine the future of materials science. 🏗️⚡🔍

Awards & Honors 🏆🎖️

  • High-Level Young Talent, Yunnan Province 🏅
  • Young & Middle-Aged Backbone Teacher, Yunnan University 🎓
  • Principal Investigator of NSFC Project 🔬
  • Leader of Yunnan Province Major Science & Technology Programs 🚀
  • Published 100+ Research Papers in Prestigious Journals 📖
  • Author of a Specialized Material Science Textbook 📚
  • Holder of 5 Software Copyrights for Scientific Innovations 💻

Publication Top Notes

  • Machine learning inverse design of high-strength mid-temperature Ag-based solders

    • Journal: Materials & Design
    • Publication Date: April 2025
    • DOI: 10.1016/j.matdes.2025.113736
    • Contributors: Chengchen Jin, Kai Xiong, Yingwu Wang, Shunmeng Zhang, Yunyang Ye, Hui Fang, Aimin Zhang, Hua Dai, Yong Mao
  • Phase size induced anomalous plastic behavior in AuSn-Au₅Sn duplex alloy

    • Journal: Materials Science and Engineering: A
    • Publication Date: March 2025
    • DOI: 10.1016/j.msea.2025.147911
    • Contributors: Rui Ma, Yingjie Sun, Hualong Ge, Wenyan Zhou, Haijun Wu, Lihua Ma, Shaoping Lu, Shunmeng Zhang, Zhiwei Xia, Kai Xiong, et al.
  • High‐throughput calculation integrated with stacking ensemble machine learning for predicting elastic properties of refractory multi‐principal element alloys

    • Journal: Materials Genome Engineering Advances
    • Publication Date: March 12, 2025
    • DOI: 10.1002/mgea.70004
    • Contributors: Chengchen Jin, Kai Xiong, Congtao Luo, Hui Fang, Chaoguang Pu, Hua Dai, Aimin Zhang, Shunmeng Zhang, Yingwu Wang
  • Strength-ductility trade-off in NbTaTiV refractory multi-principal element alloys

    • Journal: Materials Science and Engineering: A
    • Publication Date: February 2025
    • DOI: 10.1016/j.msea.2024.147677
    • Contributors: Yingwu Wang, Kai Xiong, Lingjie Yang, Shunmeng Zhang, Hui Fang, Hua Dai, Chengchen Jin, Yunyang Ye, Congtao Luo, Junjie He, et al.
  • Hf-induced strengthening and lattice distortion in HfNbTaTiV refractory multi-principal element alloys

    • Journal: Journal of Materials Research and Technology
    • Publication Date: January 2025
    • DOI: 10.1016/j.jmrt.2024.12.256
    • Contributors: Yingwu Wang, Kai Xiong, Wei Li, Chengchen Jin, Haijun Wu, Hua Dai, Zihang Yang, Hongmo Yang, Shunmeng Zhang

 

Anahita Mortazavi | Material Science | Best Researcher Award

Anahita Mortazavi | Material Science | Best Researcher Award

Dr. Anahita Mortazavi , Shahid Beheshti University, Iran.

Anahita Mortazavi is an accomplished Iranian scientist specializing in Inorganic Chemistry. She earned her Ph.D. from Sharif University of Technology and has a deep commitment to both research and teaching. With years of experience as a researcher and lecturer at top institutions, Anahita continues to push the boundaries of her field. Currently, she works as a researcher and lecturer at Shahid Beheshti University. She has also held various teaching and research assistant roles throughout her career. Her work focuses on advancing knowledge in inorganic chemistry and mentoring the next generation of scientists. 🧪📚🔬🎓

Publication Profiles

Scopus

Education & Experience 🎓💼

  • Ph.D. in Inorganic Chemistry (2011-2017)
    Sharif University of Technology, Tehran, Iran 🎓
  • M.Sc. in Inorganic Chemistry (2007-2010)
    Shahid Beheshti University, Tehran, Iran 🎓
  • B.Sc. in Pure Chemistry (2003-2007)
    Shahid Beheshti University, Tehran, Iran 🎓

Work Experience:

  • Researcher (2021-2024)
    Shahid Beheshti University, Tehran, Iran 🔬
  • Postdoctoral Researcher (2017-2019)
    Sharif University of Technology, Tehran, Iran 🔬
  • Lecturer (2020-2024)
    Shahid Beheshti University, Tehran, Iran 📚
  • Teaching Assistant (2013-2019)
    International Campus of Sharif University of Technology, Tehran, Iran 📝
  • Teaching Assistant (2011-2019)
    Sharif University of Technology, Tehran, Iran 📝
  • Research Assistant (2012-2017)
    Sharif University of Technology, Tehran, Iran 🔬
  • Teaching Assistant (2005-2010)
    Shahid Beheshti University, Tehran, Iran 📝

Summary Suitability

Dr. Anahita Mortazavi Manesh is a highly accomplished inorganic chemist with extensive research experience in material synthesis, catalysis, and advanced inorganic compounds. With a Ph.D. from Sharif University of Technology and a strong academic background, she has contributed significantly to the field through her work at Shahid Beheshti University and Sharif University of Technology as a researcher, postdoctoral fellow, and lecturer. Her cutting-edge research in inorganic chemistry has led to notable advancements in chemical synthesis and applications, making her an exceptional candidate for the Best Researcher Award.

Professional Development  📚🔍

Anahita Mortazavi has continually expanded her expertise throughout her career. She has actively participated in numerous research projects and advanced studies related to Inorganic Chemistry. By holding teaching roles and engaging in postdoctoral research, she has honed her academic and professional skills. Anahita maintains a passion for chemistry and education, mentoring future scientists and contributing valuable knowledge to the academic community. Her role as both a researcher and lecturer at Shahid Beheshti University reflects her commitment to progress and innovation in her field. 📚🔬🌱

Research Focus

Anahita’s research primarily focuses on Inorganic Chemistry, exploring the synthesis, characterization, and reactivity of inorganic compounds. She has worked on projects related to material science, catalysis, and chemical reactions at the molecular level. Her postdoctoral work contributed to the advancement of knowledge in coordination chemistry and metal-organic frameworks. Anahita’s research aims to improve the understanding of chemical bonding and molecular structure, with potential applications in energy storage, catalysis, and environmental sustainability. Her research is instrumental in advancing the field of Inorganic Chemistry and its practical applications. 🔬💡🔋

Awards & Honors 🏆🎖

  • Best Paper Award, Sharif University of Technology, 2016 🏆
  • Graduate Research Excellence Award, Shahid Beheshti University, 2014 🏆
  • Teaching Excellence Award, Sharif University of Technology, 2019 🏆
  • Outstanding Researcher Award, Shahid Beheshti University, 2022 🏆

Publications Top Noted

  • Comparative study of the catalytic performance of physically mixed and sequentially utilized γ-alumina and zeolite in methanol-to-propylene reactions, R. Soc. Open Sci., 2024 🔬
  • Methanol to olefins (MTO): Catalysts, kinetics, mechanisms, and reaction paths, Comprehensive Methanol Science, Elsevier, March 2025 📚
  • Synthesis of γ-Al2O3-CeO2 catalyst with high surface area, high stability and less coke formation for methanol dehydration, Journal of the Iranian Chemical Society, 2024 🔬
  • Novel core–shell and recyclable gas hydrate promoter for efficient solidified natural gas storage, Energy Conversion and Management, 2024 🔋
  • Synthesis, characterization, and methanol steam reforming performance of Cu/perovskite-structured catalysts, Heliyon, 2023 🔬
  • Dimethyl ether from methanol on mesoporous γ-alumina catalyst, Molecular Catalysis, 2023 🧪
  • Role of various supports in the methanol steam reforming process, Advances in Materials Science Research, 2023 📖