Asrafusjaman | Advanced Material | Best Researcher Award

Asrafusjaman | Advanced Material | Best Researcher Award

Mr. Md Asrafusjaman, City University, Bangladesh.

Md Ashrafuzzaman is a dedicated physics academic and researcher specializing in Density Functional Theory (DFT) and material characterization. As an Assistant Professor at City University, Dhaka, he focuses on semiconductors, superconductors, and solar cell fabrication, exploring their mechanical, optical, and thermodynamic properties. With extensive teaching experience, he has mentored students, conducted computational simulations, and contributed to peer-reviewed research. His expertise spans advanced materials and theoretical modeling, and he actively engages in curriculum development, workshops, and science outreach programs. Passionate about innovation, he remains committed to advancing physics knowledge and inspiring future scientists.ย ๐Ÿ”ฌ๐Ÿ“–โœจ

Publication Profiles

Orcid

Education & Experienceย ๐ŸŽ“๐Ÿ’ผ

๐Ÿ“Œย Education:

  • ๐Ÿ›๏ธย Master of Philosophy (MPhil) in Physicsย โ€“ Bangladesh University of Engineering and Technology (BUET) (2017โ€“2023)
  • ๐Ÿ“–ย M.Sc. in Physicsย โ€“ Jagannath University, Dhaka (2012โ€“2013)
  • ๐ŸŽ“ย B.Sc. (Hons) in Physicsย โ€“ Jagannath University, Dhaka (2009โ€“2012)

๐Ÿ“Œย Work Experience:

  • ๐Ÿ‘จโ€๐Ÿซย Assistant Professor (Physics)ย โ€“ City University, Dhaka (2017โ€“Present)
  • ๐Ÿซย Adjunct Facultyย โ€“ University of Information Technology & Sciences (UITS), Dhaka (2023)
  • ๐Ÿ”ฌย Research Assistantย โ€“ Bangladesh University of Engineering and Technology (BUET) (2022โ€“2023)

Summary Suitability

Dr. Md Asrafuzzaman is a distinguished researcher and academic in condensed matter physics, specializing in density functional theory (DFT) and material characterization. His groundbreaking work on semiconductors, superconductors, and solar cell fabrication has significantly advanced the understanding of material properties. His recent research, “A Comprehensive DFT Study of the Physical and Superconducting Properties of Chiral Noncentrosymmetric TaRhโ‚‚Bโ‚‚ and NbRhโ‚‚Bโ‚‚,” has provided valuable insights into the pressure-dependent superconducting mechanisms of these materials. His contributions to theoretical modeling and computational physics, alongside his commitment to academic mentorship, make him a deserving recipient of the Best Researcher Award.

Professional Developmentย  ๐Ÿ“š๐Ÿ”

Md Ashrafuzzaman has actively engaged in professional development through research, teaching, and scientific collaboration. His expertise in DFT-based computational simulations has led to valuable insights into semiconductors and superconductors. He has developed and refined curricula, participated in academic committees, and mentored students in research projects. Additionally, he has led workshops, seminars, and outreach programs to enhance physics education. With proficiency in various computational and analytical tools, he continuously integrates innovative methodologies into his research and teaching. Passionate about fostering scientific knowledge, he remains committed to advancing physics and contributing to the academic community.ย ๐Ÿ“ก๐Ÿ“Š๐Ÿงช

Research Focus

Md Ashrafuzzamanโ€™s research is centered on advanced materials, with a particular focus on semiconductors, superconductors, and solar cell fabrication. His work explores the mechanical, optical, and thermodynamic properties of materials using Density Functional Theory (DFT) and computational simulations. He has contributed to the study of chiral noncentrosymmetric compounds, analyzing their superconducting behavior under varying pressure conditions. Additionally, he investigates organic-inorganic perovskites and novel materials for energy applications. His interdisciplinary research integrates theoretical physics with experimental validation, bridging gaps between computational modeling and practical applications in modern technology.ย โšก๐Ÿ“ก๐Ÿ› ๏ธ

Publications Top Noted

  • 2024: “First-principles pressure dependent investigation of the physical and superconducting properties of ThCrโ‚‚Siโ‚‚-type superconductors SrPdโ‚‚Xโ‚‚” โ€“ย 2 citations
  • 2024: “Comparative Study of the Mechanical, Electronic, Optical and Photocatalytic properties of AGeXโ‚ƒ (A= Cs, K and Rb; X = Cl, Br and I) Perovskite. By DFT Simulation” โ€“ย 4 citations
  • 2023: “Investigation of the influence of pressure on the physical properties and superconducting transition temperature of chiral noncentrosymmetric TaRhโ‚‚Bโ‚‚ and NbRhโ‚‚Bโ‚‚” โ€“ย 8 citations
  • 2023: “Pressure-induced semiconductor to the metallic transition of monoclinic KCaโ‚‚Nbโ‚ƒOโ‚โ‚€ layered perovskite: A theoretical DFT insight” โ€“ย 5 citations
  • 2021: “Characterization analysis of textured and diffused Monocrystalline Silicon wafer” โ€“ย 3 citations
  • 2016: “Monocrystalline Silicon solar cell Fabrication in Bangladesh” โ€“ย 6 citations
  • 2015: “Study and Fabrication of Crystalline Silicon Solar Cell in Bangladesh; Using Thermal Diffusion Technique” โ€“ย 7 citations

Jong-Han Lee | Smart Materials | Best Researcher Award

Jong-Han Lee | Smart Materials | Best Researcher Award

Prof. Dr. Jong-Han Lee, Inha University, South Korea.

Dr. Jong-Han Leeย ๐ŸŽ“ย is a Professor and Head of the Department of Civil Engineering at Inha University, Korea. His expertise spans hazard risk analysis, smart materials, earthquake-resistant design, and structural resilienceย ๐Ÿ—๏ธ. With a Ph.D. from Georgia Institute of Technology, he has held key roles in academia and industry, including POSCO E&C and Daegu University. A prolific researcher, he leads cutting-edge projects in digital twins, CFRP reinforcements, and AI-driven structural analysisย ๐Ÿง ๐Ÿ”ฌ. He actively contributes to global conferences and editorial boards, shaping the future of civil engineering innovationย ๐ŸŒ.

Publivation Profiles

Scopus
Googlescholar

Education and Experience

โœ…ย Ph.D. in Civil Engineeringย โ€“ Georgia Institute of Technology (2010)
โœ…ย M.S. in Civil Engineeringย โ€“ KAIST, Korea (2004)
โœ…ย B.S. in Civil Engineeringย โ€“ KAIST, Korea (2002)

๐Ÿ›๏ธย Professor & Headย โ€“ Inha University (2024โ€“Present)
๐Ÿ›๏ธย Associate Professorย โ€“ Inha University (2019โ€“2024)
๐Ÿ›๏ธย Assistant Professorย โ€“ Inha University (2019)
๐Ÿ›๏ธย Assistant Professorย โ€“ Daegu University (2013โ€“2019)
๐Ÿ—๏ธย Section Managerย โ€“ POSCO E&C (2011โ€“2013)
๐Ÿ”ฌย Postdoctoral Researcherย โ€“ Georgia Tech (2010โ€“2011)
๐Ÿ”ย Graduate Research Assistantย โ€“ Georgia Tech & KAIST

Suitability summary for best researcher Award

Dr. Jong-Han Lee, Ph.D., P.E., a distinguished Professor in the Department of Civil Engineering at Inha University, has been honored with the Best Researcher Award for his outstanding contributions to structural engineering, hazard risk analysis, and smart material applications. His extensive research and leadership in earthquake-resistant design, structural integrity assessment, and smart infrastructure development have significantly advanced the field, making him a deserving recipient of this prestigious accolade.

Professional Development

Dr. Lee has significantly impacted structural engineering, specializing in hazard risk mitigation, earthquake resilience, and smart materials integrationย ๐Ÿ—๏ธ. As a conference chairman, editor-in-chief, and research leader, he actively contributes to advancing construction safety and sustainabilityย ๐ŸŒ. His leadership in Koreaโ€™s major civil engineering committees fosters global collaborations. With expertise in AI-driven diagnostics and digital twin technologies, his work bridges research and real-world applicationsย ๐Ÿค–๐Ÿ“Š. Committed to innovation, he continues to pioneer advanced construction materials, ensuring structural integrity and sustainability for future generationsย ๐Ÿข๐Ÿ’ก.

Research Focus

Jong-Han Lee, Ph.D., P.E., focuses onย structural resilienceย ๐Ÿ—๏ธ,ย hazard risk analysisย ๐ŸŒ, andย earthquake-resistant designย โšก. His research spansย smart materials and structuresย ๐Ÿง , integratingย field data with numerical simulationsย ๐Ÿ“Šย to enhanceย structural integrityย ๐Ÿข. He developsย advanced monitoring systemsย ๐Ÿ”ย andย digital twin technologiesย ๐Ÿ–ฅ๏ธย for predictive maintenance. His work onย carbon fiber reinforcementย ๐Ÿ—๏ธย andย self-healing cementitious materialsย ๐Ÿ ย aims atย sustainable infrastructureย ๐ŸŒฑ. With expertise inย high-speed rail bridge dynamicsย ๐Ÿš„ย andย concrete deterioration analysisย ๐Ÿš๏ธ, his research contributes to safer, longer-lasting structures in civil engineering.

Awards and Honors

๐Ÿ…ย Best Paper Awardย โ€“ Korea Society of Civil Engineers
๐Ÿ…ย Outstanding Research Awardย โ€“ Korea Concrete Institute
๐Ÿ…ย Excellence in Engineering Innovationย โ€“ Korea Institute for Structural Maintenance
๐Ÿ…ย Top 10 Influential Civil Engineers in Koreaย โ€“ 2023
๐Ÿ…ย Best Young Researcher Awardย โ€“ Korean Institute of Bridge and Structural Engineers
๐Ÿ…ย Outstanding Editor Awardย โ€“ KSCE Journal of Civil Engineering
๐Ÿ…ย Government Research Grant Awardsย โ€“ National Research Foundation of Korea

Publication Top Noted

1๏ธโƒฃย Flexural capacity of fiber reinforced concrete with a consideration of concrete strength and fiber contentย โ€“ย Construction and Building Materialsย (2017) โ€“ย ๐Ÿ“–ย Cited by: 173ย ๐Ÿ—๏ธ

2๏ธโƒฃย Influence of concrete strength combined with fiber content in the residual flexural strengths of fiber reinforced concreteย โ€“ย Composite Structuresย (2017) โ€“ย ๐Ÿ“–ย Cited by: 148ย ๐Ÿข

3๏ธโƒฃย Investigation of extreme environmental conditions and design thermal gradients during construction for prestressed concrete bridge girdersย โ€“ย Journal of Bridge Engineeringย (2012) โ€“ย ๐Ÿ“–ย Cited by: 105ย ๐ŸŒก๏ธ๐ŸŒ‰

4๏ธโƒฃย Application of probabilistic neural networks for prediction of concrete strengthย โ€“ย Journal of Materials in Civil Engineeringย (2005) โ€“ย ๐Ÿ“–ย Cited by: 101ย ๐Ÿค–๐Ÿ”ข

5๏ธโƒฃย Analysis of thermal environmental effects on precast, prestressed concrete bridge girders: temperature differentials and thermal deformationsย โ€“ย Advances in Structural Engineeringย (2012) โ€“ย ๐Ÿ“–ย Cited by: 95ย ๐ŸŒž๐ŸŒ‰

6๏ธโƒฃย Crack-closing performance of NiTi and NiTiNb fibers in cement mortar beams using shape memory effectsย โ€“ย Composite Structuresย (2018) โ€“ย ๐Ÿ“–ย Cited by: 67ย ๐Ÿ”ฉ๐Ÿ—๏ธ

7๏ธโƒฃย Experimental study of the reinforcement effect of macro-type high strength polypropylene on the flexural capacity of concreteย โ€“ย Construction and Building Materialsย (2016) โ€“ย ๐Ÿ“–ย Cited by: 64ย ๐Ÿ—๏ธ๐Ÿ”ฌ

8๏ธโƒฃย A vision-based dynamic rotational angle measurement system for large civil structuresย โ€“ย Sensorsย (2012) โ€“ย ๐Ÿ“–ย Cited by: 63ย ๐Ÿ“ธ๐Ÿข