Ali Akbarpour | Construction Materials | Best Researcher Award

Ali Akbarpour | Construction Materials | Best Researcher Award

Mr. Ali Akbarpour, University of Oklahoma, United States.

Dong-Ik Kim | Materials | Best Researcher Award

Dong-Ik Kim | Materials | Best Researcher Award

Dr. Dong-Ik Kim, Korea Institute of Science and Technology, South Korea.

Benan Shu | Materials | Best Researcher Award

Benan Shu | Materials | Best Researcher Award

Dr. Benan Shu, Foshan Transportation Science and Technology Co., Ltd, China.

Ajeet Chandra | Material Synthesis | Best Researcher Award

Ajeet Chandra | Material Synthesis | Best Researcher Award

Dr. Ajeet Chandra, Kyung Hee University, Seoul, South Korea.

Dr. Kai Xiong | Material | Best Researcher Award

Dr. Kai Xiong | Material | Best Researcher Award

Dr. Kai Xiong , Yunnan University , China.

Dr. Kai Xiong, Ph.D., is a Professor at Yunnan University and a Master Supervisor. A high-level introduced young talent in Yunnan Province and a core faculty member at Donglu, he specializes in multi-scale simulation and the design of rare and high-entropy materials. He has led major research projects, including one National Natural Science Foundation of China (NSFC) project and multiple provincial programs. With over 100 published papers, five software copyrights, and a textbook, he has significantly contributed to material science. His work bridges fundamental research with industrial applications, enhancing innovation in non-ferrous metal materials. ๐Ÿ”ฌ๐Ÿ“–

Publication Profile

Scopus
Orcid

Education & Experience ๐ŸŽ“๐Ÿ”ฌ

  • Ph.D. in Materials Science, specialized in multi-scale simulation and material design ๐Ÿ—๏ธ
  • Professor, Yunnan University, mentoring master’s students and conducting advanced research ๐Ÿ“š
  • High-level Young Talent, recognized by Yunnan Province for academic excellence ๐Ÿ…
  • Young & Middle-Aged Backbone Teacher, contributing to scientific advancement at Yunnan University ๐Ÿ‘จโ€๐Ÿซ
  • Principal Investigator, leading multiple national and provincial research projects ๐Ÿ”ฌ
  • Industry Collaborations, working on enterprise-sponsored research for material innovation โš™๏ธ

Suitability Summmary

Dr. Kai Xiong, a distinguished Professor at Yunnan University, is an ideal candidate for the Best Researcher Award due to his exceptional contributions to material science and engineering. As a high-level introduced young talent in Yunnan Province and a key faculty member at Yunnan University, he has significantly advanced the field of multi-scale simulation and the design of rare and precious non-ferrous metals and high-entropy materials. His research has had a profound impact on the development of next-generation materials, contributing both theoretically and practically to the field.

Professional Development ๐Ÿš€

Dr. Kai Xiong has made remarkable strides in computational materials science, focusing on multi-scale simulation and the development of advanced non-ferrous and high-entropy materials. His expertise spans theoretical modeling and experimental validation, enabling breakthrough discoveries in material performance enhancement. He actively mentors students, contributes to industrial applications, and collaborates on national and provincial projects. His research has yielded patented innovations, software tools, and a specialized textbook. Through continuous learning and interdisciplinary collaboration, he pushes the boundaries of material science, bridging academia and industry to drive technological advancements in rare and precious metals. ๐Ÿ”๐Ÿ”ง๐Ÿ“˜

Research Focus ๐Ÿ”ฌ๐Ÿ’ก

Dr. Kai Xiong specializes in the multi-scale simulation and design of rare and precious non-ferrous metals and high-entropy materials. His work integrates computational modeling, experimental validation, and industrial applications to enhance material properties. Key areas include atomic-level material behavior analysis, nanostructured alloy development, and mechanical and thermal stability optimization. His research plays a vital role in advanced manufacturing, aerospace, and electronic applications, improving material efficiency and sustainability. With a strong foundation in applied physics, chemistry, and engineering, he contributes to cutting-edge advancements that redefine the future of materials science. ๐Ÿ—๏ธโšก๐Ÿ”

Awards & Honors ๐Ÿ†๐ŸŽ–๏ธ

  • High-Level Young Talent, Yunnan Province ๐Ÿ…
  • Young & Middle-Aged Backbone Teacher, Yunnan University ๐ŸŽ“
  • Principal Investigator of NSFC Project ๐Ÿ”ฌ
  • Leader of Yunnan Province Major Science & Technology Programs ๐Ÿš€
  • Published 100+ Research Papers in Prestigious Journals ๐Ÿ“–
  • Author of a Specialized Material Science Textbook ๐Ÿ“š
  • Holder of 5 Software Copyrights for Scientific Innovations ๐Ÿ’ป

Publication Top Notes

  • Machine learning inverse design of high-strength mid-temperature Ag-based solders

    • Journal: Materials & Design
    • Publication Date: April 2025
    • DOI: 10.1016/j.matdes.2025.113736
    • Contributors: Chengchen Jin, Kai Xiong, Yingwu Wang, Shunmeng Zhang, Yunyang Ye, Hui Fang, Aimin Zhang, Hua Dai, Yong Mao
  • Phase size induced anomalous plastic behavior in AuSn-Auโ‚…Sn duplex alloy

    • Journal: Materials Science and Engineering: A
    • Publication Date: March 2025
    • DOI: 10.1016/j.msea.2025.147911
    • Contributors: Rui Ma, Yingjie Sun, Hualong Ge, Wenyan Zhou, Haijun Wu, Lihua Ma, Shaoping Lu, Shunmeng Zhang, Zhiwei Xia, Kai Xiong, et al.
  • Highโ€throughput calculation integrated with stacking ensemble machine learning for predicting elastic properties of refractory multiโ€principal element alloys

    • Journal: Materials Genome Engineering Advances
    • Publication Date: March 12, 2025
    • DOI: 10.1002/mgea.70004
    • Contributors: Chengchen Jin, Kai Xiong, Congtao Luo, Hui Fang, Chaoguang Pu, Hua Dai, Aimin Zhang, Shunmeng Zhang, Yingwu Wang
  • Strength-ductility trade-off in NbTaTiV refractory multi-principal element alloys

    • Journal: Materials Science and Engineering: A
    • Publication Date: February 2025
    • DOI: 10.1016/j.msea.2024.147677
    • Contributors: Yingwu Wang, Kai Xiong, Lingjie Yang, Shunmeng Zhang, Hui Fang, Hua Dai, Chengchen Jin, Yunyang Ye, Congtao Luo, Junjie He, et al.
  • Hf-induced strengthening and lattice distortion in HfNbTaTiV refractory multi-principal element alloys

    • Journal: Journal of Materials Research and Technology
    • Publication Date: January 2025
    • DOI: 10.1016/j.jmrt.2024.12.256
    • Contributors: Yingwu Wang, Kai Xiong, Wei Li, Chengchen Jin, Haijun Wu, Hua Dai, Zihang Yang, Hongmo Yang, Shunmeng Zhang

 

Rumyana Lazarova | Materials Science | Best Researcher Award

Rumyana Lazarova | Materials Science | Best Researcher Award

Prof. Dr. Rumyana Lazarova, Institute of Metal Science, Equipment and Technologies with Hydro- and Aerodynamics Centre, Bulgaria.

Yong Yu | Materials | Best Researcher Award

Yong Yu | Materials | Best Researcher Award

Dr. Yong Yu , Qingdao University of Technology , China.

Dr. Yong Yu is a dedicated researcher in civil engineering at theย School of Civil Engineering, Qingdao University of Technology, China. His expertise lies inย high-performance concrete, crumb rubber concrete, and steam-cured concrete. With a strong academic background and a passion for sustainable materials, Dr. Yu has contributed extensively to advancing concrete technology. His research aims to enhance durability, eco-friendliness, and structural performance in construction. He actively collaborates with academia and industry to implement innovative solutions in civil engineering.ย ๐Ÿ“š๐Ÿ”ฌ๐Ÿข

Publication Profile

Orcid
Scopus

Education & Experienceย ๐Ÿ“–๐Ÿ‘ท

  • Ph.D. in Civil Engineeringย โ€“ Specialized in advanced concrete materialsย ๐ŸŽ“๐Ÿ—๏ธ
  • Professor at Qingdao University of Technologyย โ€“ Leading research in sustainable concreteย ๐Ÿซ๐Ÿ”ฌ
  • Industry Collaborationย โ€“ Works with construction firms on eco-friendly materialsย ๐Ÿค๐Ÿข
  • Published Researcherย โ€“ Numerous papers on high-performance and rubberized concreteย ๐Ÿ“„๐Ÿ“Š

Suitability summary

Dr. Yong Yu, a distinguished researcher at theย School of Civil Engineering, Qingdao University of Technology, China, is an exceptional candidate for theย Best Researcher Award. His groundbreaking contributions toย high-performance concrete, crumb rubber concrete, and steam-cured concreteย have significantly advanced sustainable and durable construction materials. His expertise in optimizing concrete properties for enhanced strength, durability, and eco-friendliness makes him a leading innovator in civil engineering.ย ๐Ÿ“š๐ŸŒ

Professional Developmentย ๐Ÿ”ฌ๐Ÿ—๏ธ

Dr. Yong Yu actively engages inย cutting-edge research on sustainable concrete materials. His contributions focus onย enhancing durability, strength, and environmental benefitsย in construction. He regularlyย publishes in top-tier journals, presents at international conferences, and collaborates with industry expertsย to develop innovative solutions. As a mentor, he supervises students and researchers in civil engineering, guiding them towards practical and impactful research. His work not only advances theoretical knowledge but also influencesย real-world construction practices, ensuring a balance between strength and sustainability.ย ๐ŸŒ๐Ÿ—๏ธ๐Ÿ“š

Research Focusย ๐Ÿ”๐Ÿข

Dr. Yong Yuโ€™s research is centered onย developing high-performance, durable, and eco-friendly concrete materials. His focus includes:

  • High-Performance Concrete (HPC):ย Enhancing durability, strength, and resistance to extreme conditionsย ๐Ÿ—๏ธ๐Ÿ’ช
  • Crumb Rubber Concrete:ย Utilizing recycled rubber to improve flexibility and sustainabilityย ๐ŸŒฑโ™ป๏ธ
  • Steam-Cured Concrete:ย Optimizing rapid curing processes for efficient constructionย ๐Ÿญ๐Ÿ”ฅ

His studies contribute toย reducing carbon footprints, improving material longevity, and promoting sustainable constructionย worldwide.ย ๐ŸŒ๐Ÿ”ฌ๐Ÿข

Awards & Honorsย ๐Ÿ†๐ŸŽ–๏ธ

  • Outstanding Researcher Awardย โ€“ Recognized for contributions to concrete innovationย ๐Ÿ…๐Ÿ—๏ธ
  • Best Paper Awardย โ€“ Published groundbreaking research in material scienceย ๐Ÿ“œ๐Ÿ†
  • Excellence in Teaching Awardย โ€“ Acknowledged for mentoring and academic leadershipย ๐ŸŽ“๐Ÿ‘จโ€๐Ÿซ
  • Industry Innovation Recognitionย โ€“ Collaborated on sustainable construction projectsย ๐Ÿขโ™ป๏ธ

Publication Top Notes

  • ๐Ÿงชย “Molecular and structural basis of the dual regulation of the polycystin-2 ion channel by small-molecule ligands”ย (2024) โ€“ย Proceedings of the National Academy of Sciences
  • ๐Ÿงฌย “Structural basis for human Cav1.2 inhibition by multiple drugs and the neurotoxin calciseptine”ย (2023) โ€“ย Cell
  • ๐Ÿ”ฌย “The diverse effects of pathogenic point mutations on ion channel activity of a gain-of-function polycystin-2”ย (2023) โ€“ย Journal of Biological Chemistry
  • ๐Ÿงซย “Structures of the R-type human Cav2.3 channel reveal conformational crosstalk of the intracellular segments”ย (2022) โ€“ย Nature Communications
  • ๐Ÿงฉย “Structural basis for the severe adverse interaction of sofosbuvir and amiodarone on L-type Cav channels”ย (2022) โ€“ย Cell
  • ๐Ÿงชย “The roles of two extracellular loops in proton sensing and permeation in human Otop1 channel”ย (2022) โ€“ย Communications Biology
  • ๐Ÿงฌย “The ion channel TRPM7 regulates zinc depletion-induced MDMX degradation”ย (2021) โ€“ย Journal of Biological Chemistry

 

Qiyao Yu | Materials | Best Researcher Award

Qiyao Yu | Materials | Best Researcher Award

Prof. Qiyao Yu, Beijing Institute of Technology, China.

Dr. Qiyao Yu is an Associate Professor and doctoral supervisor at the School of Mechanical and Electrical Engineering, Beijing Institute of Technology. She holds a Ph.D. in Chemical Engineering and Technology from Harbin Institute of Technology and completed her postdoctoral research at Beijing Institute of Technology. Her expertise lies in energy storage materials, particularly sodium/potassium-ion batteries. With over 60 SCI papers, 20+ patents, and leadership in multiple national projects, she is a recognized figure in her field. She also serves as an editorial board member for Battery Materials and a reviewer for the National Natural Science Foundation of China. โšก๐Ÿ“š

Publication Profiles

Scopus
Googlescholar

Education & Experienceย ๐ŸŽ“๐Ÿ’ผ

  • Bachelor of Chemistry (2008-2012) โ€“ Beijing Institute of Technology ๐ŸŽ“
  • Master of Chemical Engineering (2012-2014) โ€“ Beijing Institute of Technology ๐Ÿ›
  • Ph.D. in Chemical Engineering & Technology (2014-2018) โ€“ Harbin Institute of Technology ๐Ÿ”ฌ
  • Postdoctoral Fellow (2018-2020) โ€“ Beijing Institute of Technology ๐Ÿ—
  • Associate Professor & Doctoral Supervisor (2020-Present) โ€“ Beijing Institute of Technology ๐Ÿ“–

Summary Suitability

Dr. Qiyao Yu is an esteemed Associate Professor at the Beijing Institute of Technology, specializing in electrochemical analysis, nanomaterial synthesis, and energy storage systems. Holding a Ph.D. from Harbin Institute of Technology, Dr. Yu has made groundbreaking contributions to alkali-ion battery research, playing a pivotal role in advancing energy materials and battery technology. Her work has bridged theoretical insights with experimental validation, contributing to the development of high-performance and sustainable energy solutions. Her pioneering research and commitment to innovation make her an ideal candidate for the Best Researcher Award.

Professional Developmentย  ๐Ÿ“š๐Ÿ”

Dr. Qiyao Yu has significantly contributed to the field of energy storage and chemical engineering. She has authored 60+ SCI papers, including 44 as first/corresponding author, with 22 papers having an impact factor greater than 10. She has led 10 national projects, obtained over 20 patents, and actively contributes as an editorial board member for Battery Materials. Her research delves into the design of advanced battery materials, focusing on sodium/potassium-ion storage. Dr. Yu also plays a vital role in teaching, textbook compilation, and knowledge graph development for chemistry and energy storage courses, ensuring the next generation of researchers thrives. ๐Ÿ”‹๐Ÿงช

Research Focus

Dr. Qiyao Yu’s research primarily revolves around next-generation energy storage systems, particularly sodium-ion and potassium-ion batteries. Her work emphasizes developing high-performance electrode materials, electrolyte engineering, and interfacial chemistry to enhance battery stability and efficiency. By integrating metal-organic frameworks, carbon nanostructures, and polyanionic compounds, her research aims to revolutionize commercial sustainable energy storage solutions. Her pioneering studies on ion migration, cathode/anode materials, and electrolyte interfaces contribute significantly to battery advancements. Her focus on scalability and real-world applications positions her as a key innovator in the future of renewable energy technologies. ๐Ÿ”‹๐Ÿ”„๐ŸŒฑ

Awards & Honors ๐Ÿ†๐ŸŽ–

  • Beijing Quality Course (Key) โ€“ Fundamentals of Organic Materials Chemistry (2021) ๐Ÿ†
  • Ministry of Industry and Information Technology Planning Textbook โ€“ Fundamentals of Organic Chemistry of Energetic Materials (2021) ๐Ÿ“š
  • Ministry of Education Teaching Reform Projects โ€“ Knowledge Graph for Organic Chemistry & Weapons Courses (2023) ๐Ÿ›
  • Leader of 10+ National Projects, including the National Natural Science Foundation of China ๐ŸŽฏ
  • Editorial Board Member โ€“ Battery Materials ๐Ÿ“ฐ

Publications Top Noted

  • Bambooโ€Like Hollow Tubes with MoSโ‚‚/Nโ€Dopedโ€C Interfaces Boost Potassiumโ€Ion Storage ๐Ÿ“ก | Cited by: 283 | Year: 2018
  • Metallic Octahedral CoSeโ‚‚ Threaded by Nโ€Doped Carbon Nanotubes: A Flexible Framework for Highโ€Performance Potassiumโ€Ion Batteries ๐Ÿ”‹ | Cited by: 230 | Year: 2018
  • Amorphous Carbon/Graphite Coupled Polyhedral Microframe with Fast Electronic Channel and Enhanced Ion Storage for Potassium-Ion Batteries โšก | Cited by: 112 | Year: 2021
  • N-Doped Carbon/Ultrathin 2D Metallic Cobalt Selenide Core/Sheath Flexible Framework Bridged by Chemical Bonds for High-Performance Potassium Storage ๐Ÿ”ฌ | Cited by: 105 | Year: 2020
  • High-Throughput Fabrication of 3D N-Doped Graphenic Framework Coupled with Feโ‚ƒC@Porous Graphite Carbon for Ultrastable Potassium Ion Storage ๐Ÿ—๏ธ | Cited by: 103 | Year: 2019
  • Unraveling the Intercorrelation Between Micro/Mesopores and K Migration Behavior in Hard Carbon ๐Ÿงฉ | Cited by: 92 | Year: 2022
  • Copper Oxide Nanoleaves Decorated Multi-Walled Carbon Nanotube as Platform for Glucose Sensing ๐Ÿƒ | Cited by: 87 | Year: 2012
  • The Multi-Yolk/Shell Structure of FeP@Foam-Like Graphenic Scaffolds: Strong Pโ€“C Bonds and Electrolyte- and Binder-Optimization Boost Potassium Storage ๐Ÿ”„ | Cited by: 86 | Year: 2019

Anahita Mortazavi | Material Science | Best Researcher Award

Anahita Mortazavi | Material Science | Best Researcher Award

Dr. Anahita Mortazavi , Shahid Beheshti University, Iran.

Anahita Mortazavi is an accomplished Iranian scientist specializing in Inorganic Chemistry. She earned her Ph.D. from Sharif University of Technology and has a deep commitment to both research and teaching. With years of experience as a researcher and lecturer at top institutions, Anahita continues to push the boundaries of her field. Currently, she works as a researcher and lecturer at Shahid Beheshti University. She has also held various teaching and research assistant roles throughout her career. Her work focuses on advancing knowledge in inorganic chemistry and mentoring the next generation of scientists. ๐Ÿงช๐Ÿ“š๐Ÿ”ฌ๐ŸŽ“

Publication Profiles

Scopus

Education & Experienceย ๐ŸŽ“๐Ÿ’ผ

  • Ph.D. in Inorganic Chemistry (2011-2017)
    Sharif University of Technology, Tehran, Iran ๐ŸŽ“
  • M.Sc. in Inorganic Chemistry (2007-2010)
    Shahid Beheshti University, Tehran, Iran ๐ŸŽ“
  • B.Sc. in Pure Chemistry (2003-2007)
    Shahid Beheshti University, Tehran, Iran ๐ŸŽ“

Work Experience:

  • Researcher (2021-2024)
    Shahid Beheshti University, Tehran, Iran ๐Ÿ”ฌ
  • Postdoctoral Researcher (2017-2019)
    Sharif University of Technology, Tehran, Iran ๐Ÿ”ฌ
  • Lecturer (2020-2024)
    Shahid Beheshti University, Tehran, Iran ๐Ÿ“š
  • Teaching Assistant (2013-2019)
    International Campus of Sharif University of Technology, Tehran, Iran ๐Ÿ“
  • Teaching Assistant (2011-2019)
    Sharif University of Technology, Tehran, Iran ๐Ÿ“
  • Research Assistant (2012-2017)
    Sharif University of Technology, Tehran, Iran ๐Ÿ”ฌ
  • Teaching Assistant (2005-2010)
    Shahid Beheshti University, Tehran, Iran ๐Ÿ“

Summary Suitability

Dr. Anahita Mortazavi Manesh is a highly accomplished inorganic chemist with extensive research experience in material synthesis, catalysis, and advanced inorganic compounds. With a Ph.D. from Sharif University of Technology and a strong academic background, she has contributed significantly to the field through her work at Shahid Beheshti University and Sharif University of Technology as a researcher, postdoctoral fellow, and lecturer. Her cutting-edge research in inorganic chemistry has led to notable advancements in chemical synthesis and applications, making her an exceptional candidate for the Best Researcher Award.

Professional Developmentย  ๐Ÿ“š๐Ÿ”

Anahita Mortazavi has continually expanded her expertise throughout her career. She has actively participated in numerous research projects and advanced studies related to Inorganic Chemistry. By holding teaching roles and engaging in postdoctoral research, she has honed her academic and professional skills. Anahita maintains a passion for chemistry and education, mentoring future scientists and contributing valuable knowledge to the academic community. Her role as both a researcher and lecturer at Shahid Beheshti University reflects her commitment to progress and innovation in her field. ๐Ÿ“š๐Ÿ”ฌ๐ŸŒฑ

Research Focus

Anahita’s research primarily focuses on Inorganic Chemistry, exploring the synthesis, characterization, and reactivity of inorganic compounds. She has worked on projects related to material science, catalysis, and chemical reactions at the molecular level. Her postdoctoral work contributed to the advancement of knowledge in coordination chemistry and metal-organic frameworks. Anahitaโ€™s research aims to improve the understanding of chemical bonding and molecular structure, with potential applications in energy storage, catalysis, and environmental sustainability. Her research is instrumental in advancing the field of Inorganic Chemistry and its practical applications. ๐Ÿ”ฌ๐Ÿ’ก๐Ÿ”‹

Awards & Honors ๐Ÿ†๐ŸŽ–

  • Best Paper Award, Sharif University of Technology, 2016 ๐Ÿ†
  • Graduate Research Excellence Award, Shahid Beheshti University, 2014 ๐Ÿ†
  • Teaching Excellence Award, Sharif University of Technology, 2019 ๐Ÿ†
  • Outstanding Researcher Award, Shahid Beheshti University, 2022 ๐Ÿ†

Publications Top Noted

  • Comparative study of the catalytic performance of physically mixed and sequentially utilized ฮณ-alumina and zeolite in methanol-to-propylene reactions, R. Soc. Open Sci., 2024 ๐Ÿ”ฌ
  • Methanol to olefins (MTO): Catalysts, kinetics, mechanisms, and reaction paths, Comprehensive Methanol Science, Elsevier, March 2025 ๐Ÿ“š
  • Synthesis of ฮณ-Al2O3-CeO2 catalyst with high surface area, high stability and less coke formation for methanol dehydration, Journal of the Iranian Chemical Society, 2024 ๐Ÿ”ฌ
  • Novel coreโ€“shell and recyclable gas hydrate promoter for efficient solidified natural gas storage, Energy Conversion and Management, 2024 ๐Ÿ”‹
  • Synthesis, characterization, and methanol steam reforming performance of Cu/perovskite-structured catalysts, Heliyon, 2023 ๐Ÿ”ฌ
  • Dimethyl ether from methanol on mesoporous ฮณ-alumina catalyst, Molecular Catalysis, 2023 ๐Ÿงช
  • Role of various supports in the methanol steam reforming process, Advances in Materials Science Research, 2023 ๐Ÿ“–

Xiping Luo | Design of Materials | Best Researcher Award

Xiping Luo | Design of Materials | Best Researcher Award

Prof. Dr. Xiping Luo, Zhejiang Agriculture and Forestry University, China.

Dr. Xiping Luo is a Professor and Vice Dean at the School of Science at Zhejiang Agriculture and Forestry University, where he also serves as the Director of the Key Laboratory of Chemical Utilization of Forestry Biomass in Zhejiang Province. Specializing in the development and chemical utilization of forestry biological resources, he has led several national and provincial research projects, published over 40 papers, and holds 16 invention patents. Dr. Luo has received multiple awards and is committed to advancing sustainable solutions in the field of chemical engineering. ๐ŸŒฑ๐Ÿ”ฌ๐Ÿ“š

Publication Profiles

Orcid
Scopus

Education & Experienceย ๐ŸŽ“๐Ÿ’ผ

  • 2016/12: PhD in Engineering, School of Chemical Engineering, Zhejiang University of Technology ๐ŸŽ“
  • 2001/04-Present: Lecturer, Associate Professor, Professor, Vice Dean, School of Chemistry and Materials Engineering, Zhejiang Agriculture and Forestry University ๐Ÿซ
  • 2015/02-2016/02: Research visit, UC Davis, USA ๐ŸŒŽ
  • 2012/10-2012/11: International training, Kenesaw State University, USA m
  • 2006/02-2006/03: JICA Research and Training, Japan ๐Ÿ‡ฏ๐Ÿ‡ต

Summary Suitability

Dr. Xiping Luo, Professor and Doctor of Engineering, is a leading researcher in biomass chemistry and sustainable materials. As Vice Dean at Zhejiang Agriculture and Forestry University and Director of a key provincial laboratory, he has pioneered innovative energy storage solutions, advanced bio-based sensors, and catalytic materials. With 16 patents, 40+ high-impact publications, and leadership in national and international projects, his work has significantly impacted renewable energy and green technology. Recognized with multiple provincial and ministerial awards, Dr. Luoโ€™s groundbreaking contributions to forestry biomass utilization and environmental sustainability make him a deserving recipient of the Best Researcher Award.

Professional Developmentย  ๐Ÿ“š๐Ÿ”

Dr. Luo’s professional growth has been marked by various international collaborations and training. He spent time at UC Davis, USA, and Kenesaw State University, focusing on higher education and research. Additionally, he engaged in research and training in Japan under the JICA program. These experiences have helped him develop a global perspective on scientific innovation and contribute significantly to forestry biomass utilization research. His academic journey reflects a continual commitment to expanding his expertise, fostering innovation in sustainable chemistry. ๐ŸŒ๐Ÿ”ฌ๐Ÿค

Research Focus

Dr. Xiping Luo’s research is primarily centered on the chemical utilization of forestry biomass. He explores innovative ways to develop and process biological resources for sustainable applications in chemistry and environmental sciences. His work aims to create more efficient, environmentally friendly processes that make use of renewable natural resources, thus contributing to a greener future. Through his work in this field, Dr. Luo also delves into advanced material development, catalysis, and energy storage systems, especially in relation to batteries and electrochemical devices.ย ๐ŸŒฟ๐Ÿ”‹โš—๏ธ

Awards And Honours

  • 3 Provincial and Ministerial Level Achievement Awardsย ๐Ÿ…
  • 2 Departmental and Bureau Level Awardsย ๐Ÿ†
  • 16 Invention Patents Grantedย ๐Ÿ› ๏ธ
  • National 948 Project Leaderย ๐Ÿ…
  • National “Twelfth Five Year Plan” Science and Technology Support Project Leaderย ๐ŸŒ

Publications Top Noted

  • “High adsorption to methylene blue based on Feโ‚ƒOโ‚„โ€“N-banana-peel biomass charcoal”ย โ€“ย RSC Advances, 2024ย ๐Ÿ“–๐Ÿ”
  • “Preparation of Aminated Sodium Lignosulfonate and Efficient Adsorption of Methyl Blue Dye”ย โ€“ย Materials, 2024ย ๐Ÿ“–๐Ÿงช
  • “Zinc Oxide-Loaded Cellulose-Based Carbon Gas Sensor for Selective Detection of Ammonia”ย โ€“ย Nanomaterials, 2023ย ๐Ÿ“–๐ŸŒฑ
  • “Zinc Oxide Loaded Cellulose-Based Carbon Gas Sensor for Selective Detection of Ammonia”ย โ€“ย Preprint, 2023ย ๐Ÿ“–๐Ÿง‘โ€๐Ÿ”ฌ