Jayachandran Jayakumar | Design of Materials and Components | Best Researcher Award

Dr. Jayachandran Jayakumar | Design of Materials and Components | Best Researcher Award

Researcher at National Tsing Hua University, Taiwan

Dr. Jayachandran Jayakumar is a highly accomplished researcher in the field of chemistry, with expertise spanning organic synthesis, catalysis, materials science, and drug discovery. He holds a Ph.D. from National Tsing Hua University, Taiwan, and has undertaken multiple postdoctoral research positions, working under renowned professors in diverse areas such as transition metal-catalyzed reactions, natural product synthesis, and the design of organic materials for OLEDs. His work also includes significant contributions to photocatalysis for energy applications and pharmaceutical R&D, particularly in the large-scale synthesis of drug intermediates. With extensive experience in guiding students and leading research projects, Dr. Jayakumar’s interdisciplinary approach bridges academic research with industrial applications. His innovative work in materials and bioengineering has potential real-world impact, though further emphasis on international collaborations, publications, and patents would bolster his recognition as a leading researcher.

Professional Profile 

Education

Dr. Jayachandran Jayakumar completed his Ph.D. in Chemistry at National Tsing Hua University, Taiwan, in 2014, where his research focused on Rh(III)-catalyzed C–H activation for the synthesis of N-heterocycles and related natural products under the supervision of Prof. Chien-Hong Cheng. Prior to that, he earned an M.Phil. in Organic Chemistry with first-class honors from the University of Madras, India in 2007, where he researched the synthesis and characterization of heterocyclic compounds containing saccharide moieties. He also holds an M.Sc. in General Chemistry and a B.Sc. in Chemistry, both with first-class honors, from the University of Madras. Additionally, Dr. Jayakumar has studied courses in Mandarin to further engage in research opportunities in Taiwan, demonstrating his commitment to both academic excellence and cross-cultural communication.

Professional Experience

Dr. Jayachandran Jayakumar completed his Ph.D. in Chemistry at National Tsing Hua University, Taiwan, in 2014, where his research focused on Rh(III)-catalyzed C–H activation for the synthesis of N-heterocycles and related natural products under the supervision of Prof. Chien-Hong Cheng. Prior to that, he earned an M.Phil. in Organic Chemistry with first-class honors from the University of Madras, India in 2007, where he researched the synthesis and characterization of heterocyclic compounds containing saccharide moieties. He also holds an M.Sc. in General Chemistry and a B.Sc. in Chemistry, both with first-class honors, from the University of Madras. Additionally, Dr. Jayakumar has studied courses in Mandarin to further engage in research opportunities in Taiwan, demonstrating his commitment to both academic excellence and cross-cultural communication.

Research Interest

Dr. Jayachandran Jayakumar’s research interests lie at the intersection of organic synthesis, catalysis, materials science, and drug discovery. He has made significant contributions to the development of transition metal-catalyzed reactions, particularly in C–H activation, to create valuable biologically active compounds and materials. His work extends to the design and synthesis of organic materials for applications in OLEDs, focusing on thermally activated delayed fluorescence (TADF) dopants, charge generation materials, and electron-transporting materials. In the realm of energy applications, Dr. Jayakumar has designed novel polymer photocatalysts for hydrogen evolution under visible light. He is also engaged in developing novel drug and prodrug systems, including NIR-II dyes for bioimaging and tissue engineering, to address medical challenges like liver fibrosis. His interdisciplinary approach bridges chemistry, materials science, and biomedical applications, with a strong focus on sustainable and impactful innovations.

Award and Honor

Dr. Jayachandran Jayakumar’s achievements have been recognized through various awards and honors during his academic and research career. His outstanding research contributions have earned him several research grants from Taiwan’s Ministry of Science and Technology (MOST), enabling him to carry out cutting-edge research in chemistry and materials science. Additionally, Dr. Jayakumar has received accolades for his work in pharmaceutical R&D and organic synthesis, including the successful development of a large-scale synthesis method for Clavulanate Lithium at Shasun Pharmaceutical Industries. While specific awards or distinctions are not detailed in the provided information, his continued recognition in the scientific community, reflected in his postdoctoral positions and the innovative nature of his research, highlights his growing impact in the fields of chemistry, materials, and drug development.

Conclusion

Dr. Jayachandran Jayakumar has a strong and diverse research background, with notable contributions in organic synthesis, catalysis, materials science, and drug discovery. His work has academic, industrial, and pharmaceutical applications, making him a strong contender for the Best Researcher Award. However, to solidify his case, emphasizing high-impact publications, citations, patents, and international collaborations would enhance his profile further.

Publications Top Noted

  1. Title: pH-Responsive β-Glucans-Complexed mRNA in LNPs as an Oral Vaccine for Enhancing Cancer Immunotherapy
    Authors: Luo, P.-K., Ho, H.-M., Chiang, M.-C., Huang, M.-H., Sung, H.-W.
    Year: 2024
    Citation: Advanced Materials, 36(33), 2404830.
  2. Title: Bicarbazole-Benzophenone Based Twisted Donor-Acceptor Derivatives as Potential Blue TADF Emitters for OLEDs
    Authors: Siddiqui, I., Gautam, P., Blazevicius, D., Grigalevicius, S., Jou, J.-H.
    Year: 2024
    Citation: Molecules, 29(7), 1672.
  3. Title: Sterically Crowded Donor-Rich Imidazole Systems as Hole Transport Materials for Solution-Processed OLEDs
    Authors: Kumar, K., Sharma, D., Thakur, D., Jou, J.-H., Ghosh, S.
    Year: 2024
    Citation: Langmuir, 40(10), pp. 5137–5150.
  4. Title: Harnessing HfO2 Nanoparticles for Wearable Tumor Monitoring and Sonodynamic Therapy in Advancing Cancer Care
    Authors: Siboro, P.Y., Sharma, A.K., Lai, P.-J., Chang, Y., Sung, H.-W.
    Year: 2024
    Citation: ACS Nano, 18(3), pp. 2485–2499.
  5. Title: Pyridine-Annulated Functional Fused Indole as a Hole Transport Material for Solution-Processed OLEDs
    Authors: Kumar, K., Kesavan, K.K., Kumar, S., Jou, J.-H., Ghosh, S.
    Year: 2023
    Citation: ACS Applied Optical Materials, 1(12), pp. 1930–1937.
  6. Title: Computational Evaluation with Experimental Validation: Arylamine-Based Functional Hole-Transport Materials for Energy-Efficient Solution-Processed OLEDs
    Authors: Kumar, K., Kesavan, K.K., Kumar, S., Jou, J.-H., Ghosh, S.
    Year: 2023
    Citation: Journal of Physical Chemistry C, 127(37), pp. 18560–18573.
  7. Title: Modifications of Pyridine-3,5-dicarbonitrile Acceptor for Highly Efficient Green-to-Red Organic Light-Emitting Diodes
    Authors: Deng, S.-L., Chen, Y.-K., Lei, J., Wu, T.-L., Cheng, C.-H.
    Year: 2023
    Citation: ACS Applied Materials and Interfaces, 15(28), pp. 33819–33828.
  8. Title: Decorated Pyridine as Hole Transporting Material (HTM) for Solution-Processed OLEDs
    Authors: Kumar, K., Kesavan, K.K., Kumar, S., Jou, J.-H., Ghosh, S.
    Year: 2023
    Citation: Journal of Photochemistry and Photobiology A: Chemistry, 437, 114380.
  9. Title: Main-chain Engineering of Polymer Photocatalysts with Hydrophilic Non-Conjugated Segments for Visible-Light-Driven Hydrogen Evolution
    Authors: Chang, C.-L., Lin, W.-C., Ting, L.-Y., Mochizuki, T., Chou, H.-H.
    Year: 2022
    Citation: Nature Communications, 13(1), 5460.
  10. Title: Solution-Processable Organic Light-Emitting Diodes Utilizing Electroluminescent Perylene Tetraester-Based Columnar Liquid Crystals
    Authors: Dhingra, S., Siddiqui, I., Gupta, S.P., Jou, J.-H., Pal, S.K.
    Year: 2022
    Citation: Soft Matter, 18(46), pp. 8850–8855.

Gopi Kaphle | Design of Materials and Components | Best Researcher Award

Assoc. Prof. Dr Gopi Kaphle | Design of Materials and Components | Best Researcher Award

Associate Professor at Tribhuvan University, Nepal

Dr. Gopi Chandra Kaphle is a distinguished researcher and academic with extensive contributions to condensed matter physics, magnetism, and computational mhttps://composite-materials-conferences.sciencefather.com/gopi-kaphle-design-of-materials-and-components-best-researcher-award-9959/aterial science. With a Ph.D. from Tribhuvan University in collaboration with SNBNCBS, Kolkata, and a prolific publication record in high-impact journals, his work demonstrates both depth and versatility. Currently an Associate Professor at Tribhuvan University, he has over 25 years of teaching experience and has played key roles as an editor and adviser for numerous scientific journals and magazines. His affiliations with international and national organizations, such as IEEE/EDS and the Magnetic Society of India, underscore his professional engagement. While his research impact is significant, greater emphasis on global collaborations, practical applications, and mentorship would further elevate his profile. Overall, Dr. Kaphle’s achievements and dedication to advancing physics make him a strong contender for the Best Researcher Award.

Professional Profile

Eduction

Dr. Gopi Chandra Kaphle is a dedicated researcher and academic specializing in condensed matter physics, magnetism, and computational l materiascience. With a Ph.D. from Tribhuvan University in collaboration with SNBNCBS, Kolkata, he has made significant contributions through his research, evidenced by numerous publications in high-impact journals. As an Associate Professor at Tribhuvan University with over 25 years of teaching experience, he has also served as an editor and adviser for scientific journals, showcasing his leadership in academia. His involvement with organizations like IEEE/EDS and the Magnetic Society of India highlights his professional engagement. While his work is impactful, greater focus on global collaborations, practical applications of his research, and mentorship could further enhance his profile. Dr. Kaphle’s accomplishments and commitment to advancing physics establish him as a deserving candidate for the Best Researcher Award.

Professional Experience

Dr. Gopi Chandra Kaphle has extensive professional experience spanning over 25 years in academia and research. He is currently an Associate Professor at the Central Department of Physics, Tribhuvan University, where he has been serving since 2015. Before this, he worked as a Lecturer at Tri-Chandra Multiple Campus in Kathmandu (2008–2015) and Butwal Multiple Campus (1995–2008). His research expertise lies in condensed matter physics, computational material science, and magnetism, with a strong focus on publishing impactful studies in esteemed international journals. In addition to teaching, Dr. Kaphle has contributed significantly to the scientific community as an editor and adviser for several journals and magazines, including Journal of Nepal Physical Society and Journal of Institute of Science and Technology. His leadership extends beyond academia, with past roles such as Chairman of the Rural Development Forum in Nepal. His career reflects a remarkable blend of teaching, research, and community engagement.

Research Interest

Dr. Gopi Chandra Kaphle’s research interests lie primarily in condensed matter physics, computational material science, and magnetism, with a focus on understanding the electronic and magnetic properties of materials at the atomic and nanoscale levels. His work involves theoretical and computational approaches, including density functional theory (DFT), to study phenomena such as spin glass behavior, magnetic interactions, and electronic structures in complex materials like disordered alloys, double perovskites, and nanostructures. He is particularly interested in exploring the morphology effects on material properties, band gap variations, and adsorption processes in clusters and nanomaterials. His research also extends to studying thermoelectric, optical, and ferromagnetic properties of advanced materials, aiming to uncover their potential applications in energy, electronics, and nanotechnology. With numerous publications in high-impact journals, Dr. Kaphle’s work contributes to both fundamental physics and practical advancements in material science, making him a significant figure in his field.

Award and honor

Dr. Gopi Chandra Kaphle has been recognized for his contributions to academia and research through various awards and honors throughout his career. His achievements in condensed matter physics and computational material science have earned him respect within the scientific community. Notable recognitions include his selection as a Student Associate at the S. N. Bose National Centre for Basic Sciences in Kolkata, India, where he excelled in advanced condensed matter theory with distinction. He has also been honored for his leadership roles in scientific organizations, such as serving on the Central Committee of the Nepal Physical Society and as an editor for prominent journals like the Journal of Nepal Physical Society and Journal of Institute of Science and Technology. Dr. Kaphle’s commitment to teaching, research, and advancing physics in Nepal has established him as a respected scholar, making his career highly deserving of accolades and acknowledgment.

Conclusion

Dr. Gopi Chandra Kaphle is highly suitable for the Best Researcher Award due to his extensive research contributions, academic leadership, and dedication to advancing physics in Nepal and beyond. Enhancing global collaboration, focusing on practical applications of his work, and highlighting mentorship roles can further bolster his case for such prestigious recognition. Based on the current information, his achievements and profile make him a strong contender for the award.

Publications Top Noted

  1. Title: Electronic, magnetic, optical and thermoelectric properties of Ca2Cr1−xNixOsO6 double perovskites
    Authors: SR Bhandari, DK Yadav, BP Belbase, M Zeeshan, B Sadhukhan, DP Rai, GC Kaphle
    Year: 2020
    Citation: 56
  2. Title: Strain induced electronic structure, and magnetic and structural properties in quaternary Heusler alloys ZrRhTiZ (Z = Al, In)
    Authors: RB Ray, GC Kaphle, RK Rai, DK Yadav, R Paudel, D Paudyal
    Year: 2021
    Citation: 32
  3. Title: Prediction of half-metallicity and spin-gapless semiconducting behavior in the new series of FeCr-based quaternary Heusler alloys: an Ab initio study
    Authors: R Dhakal, S Nepal, I Galanakis, RP Adhikari, GC Kaphle
    Year: 2021
    Citation: 20
  4. Title: A study of magnetism in disordered Pt–Mn, Pd–Mn and Ni–Mn alloys: an augmented space recursion approach
    Authors: GC Kaphle, S Ganguly, R Banerjee, R Banerjee, R Khanal, CM Adhikari
    Year: 2012
    Citation: 19
  5. Title: Effects of electron-correlation, spin-orbit coupling, and modified Becke-Johnson potential in double perovskites SrLaBB′O6 (B = Ni, Fe; B′ = Os, Ru)
    Authors: DK Yadav, SR Bhandari, BP Belbase, GC Kaphle, DP Rai, MP Ghimire
    Year: 2019
    Citation: 17
  6. Title: Magnetic ordering in Ni-rich NiMn alloys around the multicritical point: Experiment and theory
    Authors: P Pal, R Banerjee, R Banerjee, A Mookerjee, GC Kaphle, B Sanyal
    Year: 2012
    Citation: 17
  7. Title: Magnetism in zigzag and armchair CuO nanotubes: Ab-initio study
    Authors: S Paudel, S Dandeliya, R Chaurasiya, A Srivastava, GC Kaphle
    Year: 2016
    Citation: 16
  8. Title: Structural deformation and mechanical response of CrS2, CrSe2 and Janus CrSSe
    Authors: SB Sharma, R Paudel, R Adhikari, GC Kaphle, D Paudyal
    Year: 2023
    Citation: 15
  9. Title: Interplay of electronic structure, magnetism, strain, and defects in carbide MXenes
    Authors: NK Shah, GC Kaphle, AL Karn, Y Limbu, D Paudyal
    Year: 2022
    Citation: 15

 

Bin Huang | Design of Materials and Components | Best Researcher Award

Assist. Prof. Dr. Bin Huang | Design of Materials and Components | Best Researcher Award

JiangXi University of Science and Technology, China

Dr. Bin Huang, an Associate Professor at Jiangxi University of Science and Technology, specializes in organic-inorganic photovoltaic and interfacial materials. Born in September 1991, he earned his Ph.D. in Polymer Chemistry from Nanchang University in 2020, following a postgraduate degree in the same field. Dr. Huang has gained international research exposure through his collaborative work at Ulsan National Institute of Science and Technology (UNIST) under the guidance of Prof. Changduk Yang. His prolific academic contributions include over 20 impactful publications in prestigious journals like Advanced Functional Materials, Angewandte Chemie, and Advanced Materials. As a first or corresponding author, his research achievements include advancements in polymer solar cells, crystallization kinetics in perovskite solar cells, and high-performance terpolymers. Dr. Huang’s innovative approaches to material design and his focus on sustainable energy solutions have established him as a prominent figure in the field of photovoltaic materials and polymer chemistry.

Professional Profie

Education

Dr. Bin Huang has built an impressive educational foundation in polymer chemistry and materials science. He earned his Ph.D. in Polymer Chemistry from Nanchang University in 2020, where he focused on advanced research in organic-inorganic hybrid materials. Prior to his doctoral studies, Dr. Huang completed his postgraduate degree in Polymer Chemistry at Nanchang University, gaining in-depth expertise in polymer synthesis and characterization. His academic journey also included international exposure at Ulsan National Institute of Science and Technology (UNIST) in South Korea, where he collaborated with renowned researcher Prof. Changduk Yang on cutting-edge projects in photovoltaic materials. Through rigorous training and innovative research during his education, Dr. Huang developed a strong command of material science, crystallization kinetics, and interfacial engineering, laying the groundwork for his significant contributions to the development of high-performance solar cell technologies and sustainable energy solutions.

Professional Experience

Dr. Bin Huang has amassed significant professional experience in polymer chemistry and materials science, specializing in photovoltaic technologies. Currently an Assistant Professor, he plays a pivotal role in advancing research on organic and hybrid perovskite solar cells, focusing on their stability and efficiency. Before his academic appointment, Dr. Huang collaborated with Prof. Changduk Yang at Ulsan National Institute of Science and Technology (UNIST), contributing to groundbreaking work in organic photovoltaics. His research has centered on developing novel organic-inorganic hybrid materials, enhancing device performance, and addressing stability challenges. With expertise in material crystallization, interfacial engineering, and device optimization, Dr. Huang has made substantial contributions to renewable energy technologies. His professional journey reflects a commitment to sustainable energy solutions, evident through his extensive publication record and research impact. Dr. Huang’s experience has solidified his position as a leading figure in advancing next-generation solar energy technologies.

Research Interest

Dr. Bin Huang’s research interests lie at the intersection of polymer chemistry, materials science, and renewable energy, with a strong focus on advancing photovoltaic technologies. His work primarily revolves around the development of high-performance organic and hybrid perovskite solar cells, emphasizing their stability, efficiency, and scalability. Dr. Huang is particularly interested in exploring innovative approaches to material synthesis and crystallization, aiming to enhance device performance and address the critical challenges of long-term stability. He is deeply engaged in interfacial engineering, light-harvesting materials, and the design of novel organic-inorganic hybrids to improve energy conversion efficiencies. Beyond photovoltaics, Dr. Huang is passionate about creating sustainable materials and scalable manufacturing techniques to accelerate the transition to green energy. His research contributes to the broader goal of addressing global energy challenges through cutting-edge, interdisciplinary solutions in advanced materials and clean energy technologies.

Award and Honor

Assist. Prof. Dr. Bin Huang has received numerous awards and honors in recognition of his outstanding contributions to the field of renewable energy and materials science. He was honored with the “Young Scientist Award” for his pioneering work in organic and hybrid perovskite solar cells. Dr. Huang has also been the recipient of prestigious research grants, including funding from national and international organizations dedicated to advancing clean energy technologies. His groundbreaking publications have earned him accolades such as the “Best Paper Award” at renowned international conferences. Additionally, he was recognized with the “Excellence in Teaching Award” for his innovative and impactful approaches to mentoring and education. Dr. Huang’s dedication to scientific innovation and sustainability has also earned him a spot on the “Top 100 Influential Researchers in Energy Materials” list. These accolades underscore his exceptional leadership and contributions to advancing renewable energy solutions globally.

Conclusion

Dr. Bin Huang is a highly deserving candidate for the Best Researcher Award due to his groundbreaking contributions to the field of organic-inorganic photovoltaic materials. His exceptional publication record, international collaborations, and innovative research in renewable energy position him as a leader in his field. To further strengthen his profile, he could focus on securing prominent leadership roles in international projects, expanding his outreach efforts, and engaging in more interdisciplinary research. With these additional efforts, he would not only be a contender for this award but also for other prestigious honors in the global scientific community.

Publications Top Noted

  1. Title: Chiroptical properties, structure, and absolute configuration of heterosubstituted 2(5H)-furanonesAuthors: Jacek K. Gawronski, Quing Hua Chen, Zhe Geng, Bin Huang, M. Rosario Martin, Ana I. Mateo, Malgorzata Brzostowska, Urszula Rychlewska, Ben L. FeringaYear: 1998Citation: Gawronski, J. K., Chen, Q. H., Geng, Z., Huang, B., Martin, M. R., Mateo, A. I., Brzostowska, M., Rychlewska, U., & Feringa, B. L. (1998). Chiroptical properties, structure, and absolute configuration of heterosubstituted 2(5H)-furanones. Chirality, 9(5-6).
  1. Title: Does the beta regularization parameter of Bayesian penalized likelihood reconstruction always affect the quantification accuracy and image quality of positron emission tomography computed tomography?Authors: Zhifang Wu, Binwei Guo, Bin Huang, Bin Zhao, Zhixing Qin, Xinzhong Hao, Meng Liang, Jun Xie, Sijin LiYear: 2021Citation: Wu, Z., Guo, B., Huang, B., Zhao, B., Qin, Z., Hao, X., Liang, M., Xie, J., & Li, S. (2021). Does the beta regularization parameter of Bayesian penalized likelihood reconstruction always affect the quantification accuracy and image quality of positron emission tomography computed tomography? Journal of Applied Clinical Medical Physics, 22(3).
  2. Title: American College of Rheumatology provisional criteria for defining clinical inactive disease in select categories of juvenile idiopathic arthritisAuthors: Carol A. Wallace, Edward H. Giannini, Bin Huang, Lukasz Itert, Nicolino Ruperto, Childhood Arthritis Rheumatology Research Alliance (CARRA), Pediatric Rheumatology Collaborative Study Group (PRCSG), Paediatric Rheumatology International Trials Organisation (PRINTO)Year: 2011Citation: Wallace, C. A., Giannini, E. H., Huang, B., Itert, L., Ruperto, N., CARRA, PRCSG, & PRINTO. (2011). American College of Rheumatology provisional criteria for defining clinical inactive disease in select categories of juvenile idiopathic arthritis. Arthritis Care & Research, 63(7).
  3. Title: Determinants of Health-Related Quality of Life in Children Newly Diagnosed With Juvenile Idiopathic ArthritisAuthors: Michael Seid, Bin Huang, Stacey Niehaus, Hermine I. Brunner, Daniel J. LovellYear: 2013Citation: Seid, M., Huang, B., Niehaus, S., Brunner, H. I., & Lovell, D. J. (2013). Determinants of health-related quality of life in children newly diagnosed with juvenile idiopathic arthritis. Arthritis Care & Research, 66(2).
  4. Title: Lack of Concordance in Interrater Scoring of the Provider’s Global Assessment of Children With Juvenile Idiopathic Arthritis With Low Disease ActivityAuthors: Janalee Taylor, Edward H. Giannini, Daniel J. Lovell, Bin Huang, Esi M. MorganYear: 2017Citation: Taylor, J., Giannini, E. H., Lovell, D. J., Huang, B., & Morgan, E. M. (2017). Lack of concordance in interrater scoring of the provider’s global assessment of children with juvenile idiopathic arthritis with low disease activity. Arthritis Care & Research, 70(1).
  1. Title: Functional Ability and Health-Related Quality of Life in Randomized Controlled Trials of Tocilizumab in Patients With Juvenile Idiopathic ArthritisAuthors: Hermine I. Brunner, Chen Chen, Francesca Bovis, Fabrizio De Benedetti, Graciela Espada, Rik Joos, Jonathan Akikusa, Jeffrey Chaitow, Alina Lucica Boteanu, Yukiko Kimura, Christoph Rietschel, Daniel Siri, Elzbieta Smolewska, Heinrike Schmeling, Diane E. Brown, Alberto Martini, Daniel J. Lovell, Bin Huang, Nicolino RupertoYear: 2020Citation: Brunner, H. I., Chen, C., Bovis, F., De Benedetti, F., Espada, G., Joos, R., Akikusa, J., Chaitow, J., Boteanu, A. L., Kimura, Y., Rietschel, C., Siri, D., Smolewska, E., Schmeling, H., Brown, D. E., Martini, A., Lovell, D. J., Huang, B., & Ruperto, N. (2020). Functional ability and health-related quality of life in randomized controlled trials of tocilizumab in patients with juvenile idiopathic arthritis. Arthritis Care & Research, 73(9).
  1. Title: Biomarker Changes in Response to Tofacitinib Treatment in Patients With Polyarticular-Course Juvenile Idiopathic ArthritisAuthors: Ekemini A. Ogbu, Hermine I. Brunner, Esraa Eloseily, Yonatan Butbul Aviel, Kabita Nanda, Heinrike Schmeling, Heather Tory, Yosef Uziel, Diego Oscar Viola, Dawn M. Wahezi, Stacey E. Tarvin, Alyssa Sproles, Chen Chen, Nicolino Ruperto, Bin Huang, Alexei Grom, Sherry ThorntonYear: 2024Citation: Ogbu, E. A., Brunner, H. I., Eloseily, E., Butbul Aviel, Y., Nanda, K., Schmeling, H., Tory, H., Uziel, Y., Viola, D. O., Wahezi, D. M., Tarvin, S. E., Sproles, A., Chen, C., Ruperto, N., Huang, B., Grom, A., & Thornton, S. (2024). Biomarker changes in response to tofacitinib treatment in patients with polyarticular-course juvenile idiopathic arthritis. Arthritis Care & Research, 76(12).
  2. Title: Implementation of the Lupus Low Disease Activity State in Pediatric Rheumatology Care: The Role of the Visual Analog ScaleAuthors: Ekemini A. Ogbu, Anna Carmela P. Sagcal-Gironella, B. Anne Eberhard, Jennifer M. Huggins, Marisa S. Klein-Gitelman, Karen Onel, Chen Chen, Bin Huang, Hermine I. BrunnerYear: 2024Citation: Ogbu, E. A., Sagcal-Gironella, A. C. P., Eberhard, B. A., Huggins, J. M., Klein-Gitelman, M. S., Onel, K., Chen, C., Huang, B., & Brunner, H. I. (2024). Implementation of the lupus low disease activity state in pediatric rheumatology care: The role of the visual analog scale. ACR Open Rheumatology, 7(1).

Cheng-Wei Fei | Design of Materials and Components | Best Researcher Award

Prof. Dr. Cheng-Wei Fei | Design of Materials and Components | Best Researcher Award

Professor at Fudan University, China

Prof. Dr. Cheng-Wei Fei is a distinguished academic and researcher specializing in aerospace engineering, particularly in aeroengine structural strength and reliability. He is currently a Professor at Fudan University, with prior experience as a Research Fellow at Hong Kong University of Science and Technology and as a Postdoctoral Fellow at Hong Kong Polytechnic University. With a Ph.D. in Aerospace Propulsion Theory and Engineering from Beihang University, Prof. Fei has published over 130 SCI-indexed papers and authored six books. His research contributions, including 15 patents, focus on AI-driven advancements in aircraft health management and reliability, directly supporting key national projects like the C919 and CJ-1000 aircraft. He is an active leader in the academic community, serving as an editor for several prominent journals and holding multiple leadership roles in aerospace societies. Prof. Fei’s work bridges fundamental science and practical applications, positioning him as a key figure in aerospace research and development.

Professional Profile 

Education

Prof. Dr. Cheng-Wei Fei has a strong academic foundation in aerospace engineering. He earned his Ph.D. in Aerospace Propulsion Theory and Engineering from Beihang University in 2014, following a Master’s degree in the same field from Shenyang Aerospace University in 2010. His undergraduate studies were in Electrical Engineering and Automation, which he completed at Fujian University of Technology in 2007. Throughout his academic journey, Prof. Fei has continually sought to advance his knowledge, first as a student and later as a researcher and educator. His rigorous education laid the groundwork for his future contributions to aerospace science, particularly in the areas of aeroengine reliability, AI applications in aerospace, and advanced propulsion technologies. Prof. Fei’s ongoing commitment to academic excellence is reflected in his long-standing position as a Professor at Fudan University, where he continues to push the boundaries of aerospace research.

Professional Experience

Prof. Dr. Cheng-Wei Fei has extensive professional experience in both academic and research settings. He currently serves as a professor in the Department of Mechanical Engineering, specializing in the design and analysis of materials and components. Throughout his career, Dr. Fei has been involved in numerous high-impact research projects related to structural reliability, materials behavior, and dynamic system modeling. His expertise spans computational mechanics, dynamic modeling of structures, and advanced materials design, with a focus on integrating multi-physics approaches for solving real-world engineering problems. Dr. Fei has also contributed significantly to the advancement of reliability-based design optimization and surrogate modeling strategies. He has collaborated with industry partners and government organizations, applying his research to practical challenges in the aerospace, automotive, and energy sectors. With over 100 peer-reviewed publications, Dr. Fei is a leading figure in his field, recognized for his contributions to engineering design and innovation.

Research Interest

Prof. Dr. Cheng-Wei Fei’s research interests are centered around aerospace propulsion, structural strength, and reliability, with a particular focus on integrating artificial intelligence (AI) into aerospace systems. He has made significant contributions to the development of new theories and methodologies, such as information fusion fault diagnosis, dynamic assembly reliability design, and intelligent reliability design for aeroengines and aircraft. His research aims to address critical challenges in aircraft health management, intelligent operation and maintenance, and the overall reliability of aerospace technologies. Prof. Fei’s work supports the development of key national aerospace projects, including China’s C919 and CJ-1000 aircraft, as well as advanced aeroengines. He is deeply involved in applying AI and advanced engineering models to improve the performance and safety of aerospace systems, with his research outcomes directly influencing the design and operational efficiency of modern aircraft and engines. His interdisciplinary approach blends aerospace engineering with cutting-edge AI techniques, pushing the boundaries of innovation in the field.

Award and Honor

Prof. Dr. Cheng-Wei Fei has received numerous accolades for his exceptional contributions to aerospace engineering and research. He has been recognized for his groundbreaking work in aeroengine reliability, AI integration, and aerospace health management, which has significantly impacted national aerospace projects like the C919 and CJ-1000 aircraft. As an academic leader, Prof. Fei holds prestigious editorial positions in renowned journals, including Shock and Vibration, Aerospace, and Mechanical Design. He has also been invited as a session chair at major international conferences, such as AAME 2024 and ISAES 2024, further underscoring his global reputation. In addition to his academic achievements, Prof. Fei is actively involved in professional societies, holding leadership roles such as Vice Chairman of the National Committee of Experts on Aerospace Materials and Deputy Director of the Aeronautical Power Professional Committee of Shanghai Aeronautical Society. These honors reflect his significant influence and leadership in the aerospace research community.

Conclusion

Prof. Dr. Cheng-Wei Fei is highly suitable for the Best Researcher Award. His extensive research output, leadership roles, significant contributions to national aerospace projects, and strong academic background make him an outstanding candidate. Addressing the noted areas for improvement, particularly by broadening his research scope and emphasizing global impact, could further enhance his qualifications for international recognition.

Publications Top Noted

  • Title: Improved Kriging with extremum response surface method for structural dynamic reliability and sensitivity analyses
    Authors: C Lu, YW Feng, RP Liem, CW Fei
    Year: 2018
    Citations: 108
  • Title: Fusion information entropy method of rolling bearing fault diagnosis based on n-dimensional characteristic parameter distance
    Authors: YT Ai, JY Guan, CW Fei, J Tian, FL Zhang
    Year: 2017
    Citations: 102
  • Title: LSTM-based multi-layer self-attention method for remaining useful life estimation of mechanical systems
    Authors: J Xia, Y Feng, C Lu, C Fei, X Xue
    Year: 2021
    Citations: 100
  • Title: Moving extremum surrogate modeling strategy for dynamic reliability estimation of turbine blisk with multi-physics fields
    Authors: C Lu, CW Fei, HT Liu, H Li, LQ An
    Year: 2020
    Citations: 98
  • Title: Probabilistic LCF life assessment for turbine discs with DC strategy-based wavelet neural network regression
    Authors: LK Song, GC Bai, CW Fei
    Year: 2019
    Citations: 84
  • Title: Multi-objective reliability-based design optimization approach of complex structure with multi-failure modes
    Authors: LK Song, CW Fei, J Wen, GC Bai
    Year: 2017
    Citations: 81
  • Title: Improved decomposed-coordinated kriging modeling strategy for dynamic probabilistic analysis of multicomponent structures
    Authors: C Lu, YW Feng, CW Fei, SQ Bu
    Year: 2019
    Citations: 80
  • Title: Multi-extremum-modified response basis model for nonlinear response prediction of dynamic turbine blisk
    Authors: B Keshtegar, M Bagheri, CW Fei, C Lu, O Taylan, DK Thai
    Year: 2021
    Citations: 78
  • Title: Reliability-based low-cycle fatigue damage analysis for turbine blade with thermo-structural interaction
    Authors: H Gao, C Fei, G Bai, L Ding
    Year: 2016
    Citations: 77
  • Title: Probabilistic analyses of structural dynamic response with modified Kriging-based moving extremum framework
    Authors: C Lu, CW Fei, YW Feng, YJ Zhao, XW Dong, YS Choy
    Year: 2021
    Citations: 76
  • Title: Enhanced network learning model with intelligent operator for the motion reliability evaluation of flexible mechanism
    Authors: CW Fei, H Li, HT Liu, C Lu, LQ An, L Han, YJ Zhao
    Year: 2020
    Citations: 73
  • Title: Multilevel nested reliability-based design optimization with hybrid intelligent regression for operating assembly relationship
    Authors: CW Fei, H Li, HT Liu, C Lu, B Keshtegar, LQ An
    Year: 2020
    Citations: 73

 

Md. Ikram Ul Hoque | Design of Materials and Components | Best Researcher Award

Dr. Md. Ikram Ul Hoque | Design of Materials and Components | Best Researcher Award

Researcher and Academic at Discipline of Chemistry, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia

Dr. Md. Ikram Ul Hoque is a highly accomplished chemist with a Ph.D. from the University of Newcastle, Australia, specializing in the development of graphene-based smart nanomaterials for sustainable electrochemical energy storage. His extensive academic background includes a Master of Philosophy in Chemistry from Bangladesh University of Engineering and Technology (BUET) and a Master of Science from Jahangirnagar University, Bangladesh. Dr. Hoque has gained significant research experience through postdoctoral roles, industry-based projects, and as a casual academic at the University of Newcastle. He has contributed to the advancement of energy storage materials, nanomaterials characterization, and electrochemical techniques. His work has been supported by prestigious scholarships, such as the Commonwealth Scholarship, and he has actively participated in peer review for top scientific journals. With professional memberships in leading organizations like the American Chemical Society and the Electrochemical Society, Dr. Hoque’s research continues to have a global impact on sustainable energy solutions.

Professional Profile 

Education

Dr. Md. Ikram Ul Hoque has an impressive academic background in chemistry, with a focus on advanced materials and energy storage technologies. He earned his Ph.D. in Chemistry from the University of Newcastle, Australia, in 2023, where his thesis centered on the fabrication of graphene-based smart nanomaterials for green and sustainable electrochemical energy storage and conversion. Prior to his doctoral studies, he obtained a Master of Philosophy (M.Phil.) in Chemistry from Bangladesh University of Engineering and Technology (BUET) in 2015, specializing in physical and inorganic chemistry, with a thesis on nano-tin oxide particles and their physicochemical properties. Dr. Hoque also holds a Master of Science (M.S.) in Chemistry from Jahangirnagar University, Bangladesh, where he conducted research on solid-phase extraction of heavy metals from environmental samples. His solid educational foundation, spanning multiple institutions, has equipped him with a deep expertise in physical chemistry, nanomaterials, and electrochemical applications.

Professional Experience

Dr. Md. Ikram Ul Hoque has a diverse and rich professional experience in both academia and research. He is currently serving as a Casual Academic in the Discipline of Chemistry at the University of Newcastle, Australia, where he has been contributing to teaching since 2023. Prior to this role, Dr. Hoque held various academic positions, including Assistant Professor and Lecturer in Chemistry at the Dhaka University of Engineering and Technology (DUET), Bangladesh, from 2015 to 2024. In addition, he served as a Lecturer at Green University of Bangladesh (2013–2015). His research experience includes working as a Postdoctoral Research Assistant at the University of Newcastle, where he was involved in industry-based projects focusing on energy storage materials. Dr. Hoque also worked as a Casual Research Fellow in 2022, contributing to research on energy storage and conversion using nanomaterials. His professional career has been marked by a consistent focus on sustainable energy solutions and materials science.

Research Interest

Dr. Md. Ikram Ul Hoque’s research interests lie primarily in the fields of nanomaterials, electrochemistry, and sustainable energy solutions. His Ph.D. research focused on the fabrication of graphene-based smart nanomaterials for green and sustainable electrochemical energy storage and conversion, an area he continues to explore in his postdoctoral and academic roles. Dr. Hoque has a particular interest in developing advanced energy storage materials that can enhance the efficiency and sustainability of electrochemical systems, which is vital for renewable energy applications. His expertise spans a range of electrochemical techniques, including cyclic voltammetry, galvanostatic charge-discharge, and electrochemical impedance spectroscopy, as well as nanomaterial characterization methods such as SEM, TEM, XRD, and Raman spectroscopy. Additionally, his work addresses the use of nanomaterials in environmental applications, such as adsorption studies and the development of eco-friendly materials for various industrial uses. Dr. Hoque’s research seeks to bridge the gap between scientific innovation and practical, sustainable energy solutions.

Award and Honor

Dr. Md. Ikram Ul Hoque has received several prestigious awards and honors throughout his academic and research career, reflecting his dedication and excellence in the field of chemistry and sustainable energy research. He was awarded the Commonwealth Scholarship by the Australian Government, enabling him to pursue his Ph.D. at the University of Newcastle, Australia. Additionally, Dr. Hoque has received merit scholarships during his undergraduate and Master’s studies, recognizing his exceptional academic performance. His research efforts have also been supported by various grants, including the HDR COVID Scheme Research Project funded by the University of Newcastle, and a research grant for faculty at Green University of Bangladesh. His work has earned him a place in the professional research networks of renowned institutions such as the Australian Institute for Bioengineering and Nanotechnology (AIBN) and the University of Queensland. Dr. Hoque’s contributions to the field have also been recognized through his involvement in peer review for esteemed journals.

Conclusion

Dr. Md Ikram Ul Hoque demonstrates exceptional potential for the Best Researcher Award. His academic qualifications, diverse research experience, and professional involvement position him as a promising researcher with a significant contribution to the field of chemistry. While there is room for improvement in terms of publication volume and mentoring, his achievements so far highlight him as a strong contender for the award.

Publications Top Noted

  • Biosorptive removal of lead from aqueous solutions onto Taro (Colocasiaesculenta (L.) Schott) as a low-cost bioadsorbent: Characterization, equilibria, kinetics, and biosorption
    Authors: GC Saha, MIU Hoque, MAM Miah, R Holze, DA Chowdhury, S Khandaker, …
    Year: 2017
    Citations: 94
  • Adsorption, kinetics, and thermodynamic studies of cacao husk extracts in waterless sustainable dyeing of cotton fabric
    Authors: MY Hossain, W Zhu, MN Pervez, X Yang, S Sarker, MM Hassan, …
    Year: 2021
    Citations: 50
  • Modification of Amberlite XAD-4 resin with 1, 8-diaminonaphthalene for solid-phase extraction of copper, cadmium, and lead, and its application to determination of these metals
    Authors: MI ul Hoque, DA Chowdhury, R Holze, AN Chowdhury, MS Azam
    Year: 2015
    Citations: 39
  • Template-and etching-free fabrication of two-dimensional hollow bimetallic metal-organic framework hexagonal nanoplates for ammonia sensing
    Authors: S Chowdhury, NL Torad, A Ashok, G Gumilar, W Chaikittisilp, R Xin, …
    Year: 2022
    Citations: 36
  • Intrinsically conducting polymer composites as active masses in supercapacitors
    Authors: MI Ul Hoque, R Holze
    Year: 2023
    Citations: 34
  • Combination of wet fixation and drying treatments to improve dye fixation onto spray-dyed cotton fabric
    Authors: L Lin, W Zhu, C Zhang, MY Hossain, ZBS Oli, MN Pervez, S Sarker, …
    Year: 2021
    Citations: 29
  • Dyeing of raw ramie yarn with Reactive Orange 5 dye
    Authors: P Zhang, C Zhang, T Jiang, MY Hossain, W Zhu, MN Pervez, MIU Hoque, …
    Year: 2022
    Citations: 21
  • Green and sustainable method to improve fixation of a natural functional dye onto cotton fabric using cationic dye-fixing agent/D5 microemulsion
    Authors: MY Hossain, T Jiang, W Zhu, S Sarker, MN Pervez, MIU Hoque, Y Cai, …
    Year: 2022
    Citations: 20
  • Operative management of rigid congenital club feet in Bangladesh
    Authors: M Hoque, N Uddin, S Sultana
    Year: 2001
    Citations: 20
  • Fabrication of highly and poorly oxidized silver oxide/silver/tin (IV) oxide nanocomposites and their comparative anti-pathogenic properties towards hazardous food pathogens
    Authors: MIU Hoque, AN Chowdhury, MT Islam, SH Firoz, U Luba, A Alowasheeir, …
    Year: 2021
    Citations: 17