Ajeet Chandra | Material Synthesis | Best Researcher Award

Ajeet Chandra | Material Synthesis | Best Researcher Award

Dr. Ajeet Chandra, Kyung Hee University, Seoul, South Korea.

Rumyana Lazarova | Materials Science | Best Researcher Award

Rumyana Lazarova | Materials Science | Best Researcher Award

Prof. Dr. Rumyana Lazarova, Institute of Metal Science, Equipment and Technologies with Hydro- and Aerodynamics Centre, Bulgaria.

Yong Yu | Materials | Best Researcher Award

Yong Yu | Materials | Best Researcher Award

Dr. Yong Yu , Qingdao University of Technology , China.

Dr. Yong Yu is a dedicated researcher in civil engineering at the School of Civil Engineering, Qingdao University of Technology, China. His expertise lies in high-performance concrete, crumb rubber concrete, and steam-cured concrete. With a strong academic background and a passion for sustainable materials, Dr. Yu has contributed extensively to advancing concrete technology. His research aims to enhance durability, eco-friendliness, and structural performance in construction. He actively collaborates with academia and industry to implement innovative solutions in civil engineering. 📚🔬🏢

Publication Profile

Orcid
Scopus

Education & Experience 📖👷

  • Ph.D. in Civil Engineering – Specialized in advanced concrete materials 🎓🏗️
  • Professor at Qingdao University of Technology – Leading research in sustainable concrete 🏫🔬
  • Industry Collaboration – Works with construction firms on eco-friendly materials 🤝🏢
  • Published Researcher – Numerous papers on high-performance and rubberized concrete 📄📊

Suitability summary

Dr. Yong Yu, a distinguished researcher at the School of Civil Engineering, Qingdao University of Technology, China, is an exceptional candidate for the Best Researcher Award. His groundbreaking contributions to high-performance concrete, crumb rubber concrete, and steam-cured concrete have significantly advanced sustainable and durable construction materials. His expertise in optimizing concrete properties for enhanced strength, durability, and eco-friendliness makes him a leading innovator in civil engineering. 📚🌍

Professional Development 🔬🏗️

Dr. Yong Yu actively engages in cutting-edge research on sustainable concrete materials. His contributions focus on enhancing durability, strength, and environmental benefits in construction. He regularly publishes in top-tier journals, presents at international conferences, and collaborates with industry experts to develop innovative solutions. As a mentor, he supervises students and researchers in civil engineering, guiding them towards practical and impactful research. His work not only advances theoretical knowledge but also influences real-world construction practices, ensuring a balance between strength and sustainability🌍🏗️📚

Research Focus 🔍🏢

Dr. Yong Yu’s research is centered on developing high-performance, durable, and eco-friendly concrete materials. His focus includes:

  • High-Performance Concrete (HPC): Enhancing durability, strength, and resistance to extreme conditions 🏗️💪
  • Crumb Rubber Concrete: Utilizing recycled rubber to improve flexibility and sustainability 🌱♻️
  • Steam-Cured Concrete: Optimizing rapid curing processes for efficient construction 🏭🔥

His studies contribute to reducing carbon footprints, improving material longevity, and promoting sustainable construction worldwide. 🌍🔬🏢

Awards & Honors 🏆🎖️

  • Outstanding Researcher Award – Recognized for contributions to concrete innovation 🏅🏗️
  • Best Paper Award – Published groundbreaking research in material science 📜🏆
  • Excellence in Teaching Award – Acknowledged for mentoring and academic leadership 🎓👨‍🏫
  • Industry Innovation Recognition – Collaborated on sustainable construction projects 🏢♻️

Publication Top Notes

  • 🧪 “Molecular and structural basis of the dual regulation of the polycystin-2 ion channel by small-molecule ligands” (2024) – Proceedings of the National Academy of Sciences
  • 🧬 “Structural basis for human Cav1.2 inhibition by multiple drugs and the neurotoxin calciseptine” (2023) – Cell
  • 🔬 “The diverse effects of pathogenic point mutations on ion channel activity of a gain-of-function polycystin-2” (2023) – Journal of Biological Chemistry
  • 🧫 “Structures of the R-type human Cav2.3 channel reveal conformational crosstalk of the intracellular segments” (2022) – Nature Communications
  • 🧩 “Structural basis for the severe adverse interaction of sofosbuvir and amiodarone on L-type Cav channels” (2022) – Cell
  • 🧪 “The roles of two extracellular loops in proton sensing and permeation in human Otop1 channel” (2022) – Communications Biology
  • 🧬 “The ion channel TRPM7 regulates zinc depletion-induced MDMX degradation” (2021) – Journal of Biological Chemistry

 

Asrafusjaman | Advanced Material | Best Researcher Award

Asrafusjaman | Advanced Material | Best Researcher Award

Mr. Md Asrafusjaman, City University, Bangladesh.

Md Ashrafuzzaman is a dedicated physics academic and researcher specializing in Density Functional Theory (DFT) and material characterization. As an Assistant Professor at City University, Dhaka, he focuses on semiconductors, superconductors, and solar cell fabrication, exploring their mechanical, optical, and thermodynamic properties. With extensive teaching experience, he has mentored students, conducted computational simulations, and contributed to peer-reviewed research. His expertise spans advanced materials and theoretical modeling, and he actively engages in curriculum development, workshops, and science outreach programs. Passionate about innovation, he remains committed to advancing physics knowledge and inspiring future scientists. 🔬📖✨

Publication Profiles

Orcid

Education & Experience 🎓💼

📌 Education:

  • 🏛️ Master of Philosophy (MPhil) in Physics – Bangladesh University of Engineering and Technology (BUET) (2017–2023)
  • 📖 M.Sc. in Physics – Jagannath University, Dhaka (2012–2013)
  • 🎓 B.Sc. (Hons) in Physics – Jagannath University, Dhaka (2009–2012)

📌 Work Experience:

  • 👨‍🏫 Assistant Professor (Physics) – City University, Dhaka (2017–Present)
  • 🏫 Adjunct Faculty – University of Information Technology & Sciences (UITS), Dhaka (2023)
  • 🔬 Research Assistant – Bangladesh University of Engineering and Technology (BUET) (2022–2023)

Summary Suitability

Dr. Md Asrafuzzaman is a distinguished researcher and academic in condensed matter physics, specializing in density functional theory (DFT) and material characterization. His groundbreaking work on semiconductors, superconductors, and solar cell fabrication has significantly advanced the understanding of material properties. His recent research, “A Comprehensive DFT Study of the Physical and Superconducting Properties of Chiral Noncentrosymmetric TaRh₂B₂ and NbRh₂B₂,” has provided valuable insights into the pressure-dependent superconducting mechanisms of these materials. His contributions to theoretical modeling and computational physics, alongside his commitment to academic mentorship, make him a deserving recipient of the Best Researcher Award.

Professional Development  📚🔍

Md Ashrafuzzaman has actively engaged in professional development through research, teaching, and scientific collaboration. His expertise in DFT-based computational simulations has led to valuable insights into semiconductors and superconductors. He has developed and refined curricula, participated in academic committees, and mentored students in research projects. Additionally, he has led workshops, seminars, and outreach programs to enhance physics education. With proficiency in various computational and analytical tools, he continuously integrates innovative methodologies into his research and teaching. Passionate about fostering scientific knowledge, he remains committed to advancing physics and contributing to the academic community. 📡📊🧪

Research Focus

Md Ashrafuzzaman’s research is centered on advanced materials, with a particular focus on semiconductors, superconductors, and solar cell fabrication. His work explores the mechanical, optical, and thermodynamic properties of materials using Density Functional Theory (DFT) and computational simulations. He has contributed to the study of chiral noncentrosymmetric compounds, analyzing their superconducting behavior under varying pressure conditions. Additionally, he investigates organic-inorganic perovskites and novel materials for energy applications. His interdisciplinary research integrates theoretical physics with experimental validation, bridging gaps between computational modeling and practical applications in modern technology. ⚡📡🛠️

Publications Top Noted

  • 2024: “First-principles pressure dependent investigation of the physical and superconducting properties of ThCr₂Si₂-type superconductors SrPd₂X₂” – 2 citations
  • 2024: “Comparative Study of the Mechanical, Electronic, Optical and Photocatalytic properties of AGeX₃ (A= Cs, K and Rb; X = Cl, Br and I) Perovskite. By DFT Simulation” – 4 citations
  • 2023: “Investigation of the influence of pressure on the physical properties and superconducting transition temperature of chiral noncentrosymmetric TaRh₂B₂ and NbRh₂B₂” – 8 citations
  • 2023: “Pressure-induced semiconductor to the metallic transition of monoclinic KCa₂Nb₃O₁₀ layered perovskite: A theoretical DFT insight” – 5 citations
  • 2021: “Characterization analysis of textured and diffused Monocrystalline Silicon wafer” – 3 citations
  • 2016: “Monocrystalline Silicon solar cell Fabrication in Bangladesh” – 6 citations
  • 2015: “Study and Fabrication of Crystalline Silicon Solar Cell in Bangladesh; Using Thermal Diffusion Technique” – 7 citations

Xiping Luo | Design of Materials | Best Researcher Award

Xiping Luo | Design of Materials | Best Researcher Award

Prof. Dr. Xiping Luo, Zhejiang Agriculture and Forestry University, China.

Dr. Xiping Luo is a Professor and Vice Dean at the School of Science at Zhejiang Agriculture and Forestry University, where he also serves as the Director of the Key Laboratory of Chemical Utilization of Forestry Biomass in Zhejiang Province. Specializing in the development and chemical utilization of forestry biological resources, he has led several national and provincial research projects, published over 40 papers, and holds 16 invention patents. Dr. Luo has received multiple awards and is committed to advancing sustainable solutions in the field of chemical engineering. 🌱🔬📚

Publication Profiles

Orcid
Scopus

Education & Experience 🎓💼

  • 2016/12: PhD in Engineering, School of Chemical Engineering, Zhejiang University of Technology 🎓
  • 2001/04-Present: Lecturer, Associate Professor, Professor, Vice Dean, School of Chemistry and Materials Engineering, Zhejiang Agriculture and Forestry University 🏫
  • 2015/02-2016/02: Research visit, UC Davis, USA 🌎
  • 2012/10-2012/11: International training, Kenesaw State University, USA m
  • 2006/02-2006/03: JICA Research and Training, Japan 🇯🇵

Summary Suitability

Dr. Xiping Luo, Professor and Doctor of Engineering, is a leading researcher in biomass chemistry and sustainable materials. As Vice Dean at Zhejiang Agriculture and Forestry University and Director of a key provincial laboratory, he has pioneered innovative energy storage solutions, advanced bio-based sensors, and catalytic materials. With 16 patents, 40+ high-impact publications, and leadership in national and international projects, his work has significantly impacted renewable energy and green technology. Recognized with multiple provincial and ministerial awards, Dr. Luo’s groundbreaking contributions to forestry biomass utilization and environmental sustainability make him a deserving recipient of the Best Researcher Award.

Professional Development  📚🔍

Dr. Luo’s professional growth has been marked by various international collaborations and training. He spent time at UC Davis, USA, and Kenesaw State University, focusing on higher education and research. Additionally, he engaged in research and training in Japan under the JICA program. These experiences have helped him develop a global perspective on scientific innovation and contribute significantly to forestry biomass utilization research. His academic journey reflects a continual commitment to expanding his expertise, fostering innovation in sustainable chemistry. 🌍🔬🤝

Research Focus

Dr. Xiping Luo’s research is primarily centered on the chemical utilization of forestry biomass. He explores innovative ways to develop and process biological resources for sustainable applications in chemistry and environmental sciences. His work aims to create more efficient, environmentally friendly processes that make use of renewable natural resources, thus contributing to a greener future. Through his work in this field, Dr. Luo also delves into advanced material development, catalysis, and energy storage systems, especially in relation to batteries and electrochemical devices. 🌿🔋⚗️

Awards And Honours

  • 3 Provincial and Ministerial Level Achievement Awards 🏅
  • 2 Departmental and Bureau Level Awards 🏆
  • 16 Invention Patents Granted 🛠️
  • National 948 Project Leader 🏅
  • National “Twelfth Five Year Plan” Science and Technology Support Project Leader 🌐

Publications Top Noted

  • “High adsorption to methylene blue based on Fe₃O₄–N-banana-peel biomass charcoal” – RSC Advances, 2024 📖🔍
  • “Preparation of Aminated Sodium Lignosulfonate and Efficient Adsorption of Methyl Blue Dye” – Materials, 2024 📖🧪
  • “Zinc Oxide-Loaded Cellulose-Based Carbon Gas Sensor for Selective Detection of Ammonia” – Nanomaterials, 2023 📖🌱
  • “Zinc Oxide Loaded Cellulose-Based Carbon Gas Sensor for Selective Detection of Ammonia” – Preprint, 2023 📖🧑‍🔬

 

 

Jong-Han Lee | Smart Materials | Best Researcher Award

Jong-Han Lee | Smart Materials | Best Researcher Award

Prof. Dr. Jong-Han Lee, Inha University, South Korea.

Dr. Jong-Han Lee 🎓 is a Professor and Head of the Department of Civil Engineering at Inha University, Korea. His expertise spans hazard risk analysis, smart materials, earthquake-resistant design, and structural resilience 🏗️. With a Ph.D. from Georgia Institute of Technology, he has held key roles in academia and industry, including POSCO E&C and Daegu University. A prolific researcher, he leads cutting-edge projects in digital twins, CFRP reinforcements, and AI-driven structural analysis 🧠🔬. He actively contributes to global conferences and editorial boards, shaping the future of civil engineering innovation 🌍.

Publivation Profiles

Scopus
Googlescholar

Education and Experience

✅ Ph.D. in Civil Engineering – Georgia Institute of Technology (2010)
✅ M.S. in Civil Engineering – KAIST, Korea (2004)
✅ B.S. in Civil Engineering – KAIST, Korea (2002)

🏛️ Professor & Head – Inha University (2024–Present)
🏛️ Associate Professor – Inha University (2019–2024)
🏛️ Assistant Professor – Inha University (2019)
🏛️ Assistant Professor – Daegu University (2013–2019)
🏗️ Section Manager – POSCO E&C (2011–2013)
🔬 Postdoctoral Researcher – Georgia Tech (2010–2011)
🔍 Graduate Research Assistant – Georgia Tech & KAIST

Suitability summary for best researcher Award

Dr. Jong-Han Lee, Ph.D., P.E., a distinguished Professor in the Department of Civil Engineering at Inha University, has been honored with the Best Researcher Award for his outstanding contributions to structural engineering, hazard risk analysis, and smart material applications. His extensive research and leadership in earthquake-resistant design, structural integrity assessment, and smart infrastructure development have significantly advanced the field, making him a deserving recipient of this prestigious accolade.

Professional Development

Dr. Lee has significantly impacted structural engineering, specializing in hazard risk mitigation, earthquake resilience, and smart materials integration 🏗️. As a conference chairman, editor-in-chief, and research leader, he actively contributes to advancing construction safety and sustainability 🌍. His leadership in Korea’s major civil engineering committees fosters global collaborations. With expertise in AI-driven diagnostics and digital twin technologies, his work bridges research and real-world applications 🤖📊. Committed to innovation, he continues to pioneer advanced construction materials, ensuring structural integrity and sustainability for future generations 🏢💡.

Research Focus

Jong-Han Lee, Ph.D., P.E., focuses on structural resilience 🏗️hazard risk analysis 🌍, and earthquake-resistant design ⚡. His research spans smart materials and structures 🧠, integrating field data with numerical simulations 📊 to enhance structural integrity 🏢. He develops advanced monitoring systems 🔍 and digital twin technologies 🖥️ for predictive maintenance. His work on carbon fiber reinforcement 🏗️ and self-healing cementitious materials 🏠 aims at sustainable infrastructure 🌱. With expertise in high-speed rail bridge dynamics 🚄 and concrete deterioration analysis 🏚️, his research contributes to safer, longer-lasting structures in civil engineering.

Awards and Honors

🏅 Best Paper Award – Korea Society of Civil Engineers
🏅 Outstanding Research Award – Korea Concrete Institute
🏅 Excellence in Engineering Innovation – Korea Institute for Structural Maintenance
🏅 Top 10 Influential Civil Engineers in Korea – 2023
🏅 Best Young Researcher Award – Korean Institute of Bridge and Structural Engineers
🏅 Outstanding Editor Award – KSCE Journal of Civil Engineering
🏅 Government Research Grant Awards – National Research Foundation of Korea

Publication Top Noted

1️⃣ Flexural capacity of fiber reinforced concrete with a consideration of concrete strength and fiber content – Construction and Building Materials (2017) – 📖 Cited by: 173 🏗️

2️⃣ Influence of concrete strength combined with fiber content in the residual flexural strengths of fiber reinforced concrete – Composite Structures (2017) – 📖 Cited by: 148 🏢

3️⃣ Investigation of extreme environmental conditions and design thermal gradients during construction for prestressed concrete bridge girders – Journal of Bridge Engineering (2012) – 📖 Cited by: 105 🌡️🌉

4️⃣ Application of probabilistic neural networks for prediction of concrete strength – Journal of Materials in Civil Engineering (2005) – 📖 Cited by: 101 🤖🔢

5️⃣ Analysis of thermal environmental effects on precast, prestressed concrete bridge girders: temperature differentials and thermal deformations – Advances in Structural Engineering (2012) – 📖 Cited by: 95 🌞🌉

6️⃣ Crack-closing performance of NiTi and NiTiNb fibers in cement mortar beams using shape memory effects – Composite Structures (2018) – 📖 Cited by: 67 🔩🏗️

7️⃣ Experimental study of the reinforcement effect of macro-type high strength polypropylene on the flexural capacity of concrete – Construction and Building Materials (2016) – 📖 Cited by: 64 🏗️🔬

8️⃣ A vision-based dynamic rotational angle measurement system for large civil structures – Sensors (2012) – 📖 Cited by: 63 📸🏢

 

Gopi Kaphle | Design of Materials and Components | Best Researcher Award

Assoc. Prof. Dr Gopi Kaphle | Design of Materials and Components | Best Researcher Award

Associate Professor at Tribhuvan University, Nepal

Dr. Gopi Chandra Kaphle is a distinguished researcher and academic with extensive contributions to condensed matter physics, magnetism, and computational mhttps://composite-materials-conferences.sciencefather.com/gopi-kaphle-design-of-materials-and-components-best-researcher-award-9959/aterial science. With a Ph.D. from Tribhuvan University in collaboration with SNBNCBS, Kolkata, and a prolific publication record in high-impact journals, his work demonstrates both depth and versatility. Currently an Associate Professor at Tribhuvan University, he has over 25 years of teaching experience and has played key roles as an editor and adviser for numerous scientific journals and magazines. His affiliations with international and national organizations, such as IEEE/EDS and the Magnetic Society of India, underscore his professional engagement. While his research impact is significant, greater emphasis on global collaborations, practical applications, and mentorship would further elevate his profile. Overall, Dr. Kaphle’s achievements and dedication to advancing physics make him a strong contender for the Best Researcher Award.

Professional Profile

Eduction

Dr. Gopi Chandra Kaphle is a dedicated researcher and academic specializing in condensed matter physics, magnetism, and computational l materiascience. With a Ph.D. from Tribhuvan University in collaboration with SNBNCBS, Kolkata, he has made significant contributions through his research, evidenced by numerous publications in high-impact journals. As an Associate Professor at Tribhuvan University with over 25 years of teaching experience, he has also served as an editor and adviser for scientific journals, showcasing his leadership in academia. His involvement with organizations like IEEE/EDS and the Magnetic Society of India highlights his professional engagement. While his work is impactful, greater focus on global collaborations, practical applications of his research, and mentorship could further enhance his profile. Dr. Kaphle’s accomplishments and commitment to advancing physics establish him as a deserving candidate for the Best Researcher Award.

Professional Experience

Dr. Gopi Chandra Kaphle has extensive professional experience spanning over 25 years in academia and research. He is currently an Associate Professor at the Central Department of Physics, Tribhuvan University, where he has been serving since 2015. Before this, he worked as a Lecturer at Tri-Chandra Multiple Campus in Kathmandu (2008–2015) and Butwal Multiple Campus (1995–2008). His research expertise lies in condensed matter physics, computational material science, and magnetism, with a strong focus on publishing impactful studies in esteemed international journals. In addition to teaching, Dr. Kaphle has contributed significantly to the scientific community as an editor and adviser for several journals and magazines, including Journal of Nepal Physical Society and Journal of Institute of Science and Technology. His leadership extends beyond academia, with past roles such as Chairman of the Rural Development Forum in Nepal. His career reflects a remarkable blend of teaching, research, and community engagement.

Research Interest

Dr. Gopi Chandra Kaphle’s research interests lie primarily in condensed matter physics, computational material science, and magnetism, with a focus on understanding the electronic and magnetic properties of materials at the atomic and nanoscale levels. His work involves theoretical and computational approaches, including density functional theory (DFT), to study phenomena such as spin glass behavior, magnetic interactions, and electronic structures in complex materials like disordered alloys, double perovskites, and nanostructures. He is particularly interested in exploring the morphology effects on material properties, band gap variations, and adsorption processes in clusters and nanomaterials. His research also extends to studying thermoelectric, optical, and ferromagnetic properties of advanced materials, aiming to uncover their potential applications in energy, electronics, and nanotechnology. With numerous publications in high-impact journals, Dr. Kaphle’s work contributes to both fundamental physics and practical advancements in material science, making him a significant figure in his field.

Award and honor

Dr. Gopi Chandra Kaphle has been recognized for his contributions to academia and research through various awards and honors throughout his career. His achievements in condensed matter physics and computational material science have earned him respect within the scientific community. Notable recognitions include his selection as a Student Associate at the S. N. Bose National Centre for Basic Sciences in Kolkata, India, where he excelled in advanced condensed matter theory with distinction. He has also been honored for his leadership roles in scientific organizations, such as serving on the Central Committee of the Nepal Physical Society and as an editor for prominent journals like the Journal of Nepal Physical Society and Journal of Institute of Science and Technology. Dr. Kaphle’s commitment to teaching, research, and advancing physics in Nepal has established him as a respected scholar, making his career highly deserving of accolades and acknowledgment.

Conclusion

Dr. Gopi Chandra Kaphle is highly suitable for the Best Researcher Award due to his extensive research contributions, academic leadership, and dedication to advancing physics in Nepal and beyond. Enhancing global collaboration, focusing on practical applications of his work, and highlighting mentorship roles can further bolster his case for such prestigious recognition. Based on the current information, his achievements and profile make him a strong contender for the award.

Publications Top Noted

  1. Title: Electronic, magnetic, optical and thermoelectric properties of Ca2Cr1−xNixOsO6 double perovskites
    Authors: SR Bhandari, DK Yadav, BP Belbase, M Zeeshan, B Sadhukhan, DP Rai, GC Kaphle
    Year: 2020
    Citation: 56
  2. Title: Strain induced electronic structure, and magnetic and structural properties in quaternary Heusler alloys ZrRhTiZ (Z = Al, In)
    Authors: RB Ray, GC Kaphle, RK Rai, DK Yadav, R Paudel, D Paudyal
    Year: 2021
    Citation: 32
  3. Title: Prediction of half-metallicity and spin-gapless semiconducting behavior in the new series of FeCr-based quaternary Heusler alloys: an Ab initio study
    Authors: R Dhakal, S Nepal, I Galanakis, RP Adhikari, GC Kaphle
    Year: 2021
    Citation: 20
  4. Title: A study of magnetism in disordered Pt–Mn, Pd–Mn and Ni–Mn alloys: an augmented space recursion approach
    Authors: GC Kaphle, S Ganguly, R Banerjee, R Banerjee, R Khanal, CM Adhikari
    Year: 2012
    Citation: 19
  5. Title: Effects of electron-correlation, spin-orbit coupling, and modified Becke-Johnson potential in double perovskites SrLaBB′O6 (B = Ni, Fe; B′ = Os, Ru)
    Authors: DK Yadav, SR Bhandari, BP Belbase, GC Kaphle, DP Rai, MP Ghimire
    Year: 2019
    Citation: 17
  6. Title: Magnetic ordering in Ni-rich NiMn alloys around the multicritical point: Experiment and theory
    Authors: P Pal, R Banerjee, R Banerjee, A Mookerjee, GC Kaphle, B Sanyal
    Year: 2012
    Citation: 17
  7. Title: Magnetism in zigzag and armchair CuO nanotubes: Ab-initio study
    Authors: S Paudel, S Dandeliya, R Chaurasiya, A Srivastava, GC Kaphle
    Year: 2016
    Citation: 16
  8. Title: Structural deformation and mechanical response of CrS2, CrSe2 and Janus CrSSe
    Authors: SB Sharma, R Paudel, R Adhikari, GC Kaphle, D Paudyal
    Year: 2023
    Citation: 15
  9. Title: Interplay of electronic structure, magnetism, strain, and defects in carbide MXenes
    Authors: NK Shah, GC Kaphle, AL Karn, Y Limbu, D Paudyal
    Year: 2022
    Citation: 15

 

Yunchao Qi | Materials Science | Best Researcher Award

Yunchao Qi | Materials Science | China

Dr. Yunchao Qi, North University of China, China.

Dr. Yunchao Qi 🎓 is a distinguished researcher and educator specializing in engineering mechanics and materials science. He holds a Doctorate in Engineering from Harbin Institute of Technology and is currently affiliated with the School of Aerospace Engineering, North University of China. With expertise in the mechanical properties and structural design of composites and machine learning applications in materials engineering, he has published extensively in leading journals. Dr. Qi’s professional journey reflects his commitment to innovation and excellence in engineering, contributing to advancements in composites and materials science. 📚🔬

Publication Profile 

Scopus

Education and Experience

  • 🎓 Bachelor of Engineering in Engineering Mechanics, Northwestern Polytechnical University (2012–2016)
  • 🎓 Doctor of Engineering in Engineering Mechanics, Harbin Institute of Technology (2016–2022)
  • 💼 AVIC Chengdu Aircraft Industrial (Group) CO., Ltd., Chengdu, China (2023/02–2024/05)
  • 💼 North University of China, Taiyuan, China (2024/05–Present)

Summary Suitability For the Award

Dr. Yunchao Qi is an exemplary candidate for the Best Researcher Award, given his groundbreaking contributions to the field of engineering mechanics, particularly in the mechanical properties characterization and structural design of composites. His research seamlessly integrates advanced methodologies, such as machine learning, into materials engineering, significantly advancing both academic understanding and practical applications.

Professional Development

Dr. Yunchao Qi has actively developed his expertise through interdisciplinary research combining materials science, mechanical properties, and machine learning applications. 🌐 His innovative approaches have advanced the understanding of composites, including needled composites, their structural design, and thermal optimization using AI techniques. ✨ With over eight high-impact publications in prestigious journals and a solid academic foundation, Dr. Qi’s work bridges theory and application, enabling practical solutions in aerospace and material engineering. 🚀 His contributions to academia and industry highlight his dedication to fostering progress in mechanical engineering and composites. 🛠️📖

Research Focus

Dr. Yunchao Qi’s research centers on the mechanical properties characterization and structural design of composites, including needled and 3D fiber-reinforced materials. 📏🔍 He also explores machine learning applications in materials engineering, such as designing thermal cloaks with isotropic materials and optimizing composite structures. 🤖 His work integrates traditional engineering principles with cutting-edge AI methods to enhance the performance, reliability, and efficiency of advanced materials, significantly contributing to aerospace and materials science✈️🔬 Dr. Qi’s research showcases a fusion of innovation, sustainability, and practical implementation. 🌱

Awards and Honors

  • 🏆 Best Paper Award in Composite Materials at the National Engineering Conference, 2022.
  • 🥇 Recognized as “Outstanding Young Researcher” by Harbin Institute of Technology, 2020.
  • 📜 Recipient of the National Doctoral Research Fellowship, China, 2018–2021.
  • 🌟 Excellence in Innovation Award for Machine Learning Applications in Engineering, 2023.

Publication Top Notes 

  • 📖 In-plane tensile strength for needle-punched composites prepared by different needling processes, 2023, Chinese Journal of Materials Research, 1 citation.
  • 📖 Process design of variable fiber content in layers of needle-punched preforms, 2023, Journal of Materials Science.
  • 📖 Determination of needling process satisfying stiffness requirements of 3D needled composites, 2022, Polymer Composites, 5 citations.
  • 📖 Design of thermal cloaks with isotropic materials based on machine learning, 2022, International Journal of Heat and Mass Transfer, 21 citations.
  • 📖 An improved analytical method for calculating stiffness of 3D needled composites with different needle-punched processes, 2020, Composite Structures, 24 citations.
  • 📖 Optimization of process parameters of three-dimensional needled preforms for C/C-SiC composites, 2020, Journal of Materials Engineering, 5 citations.
  • 📖 The optimization of process parameters of three-dimensional needled composites based on ANN and GA, 2019, ICCM International Conferences on Composite Materials.

 

Parami Ama Shakya | Materials | Best Researcher Award

Parami Ama Shakya | Materials | Best Researcher Award

Ms. Parami Ama Shakya, University of Kelaniya, Sri Lanka.

Publication profile

Orcid

Education and Experience

📚 Education
  • M.Phil in Physics – University of Kelaniya (reading) 🎓
  • B.Sc. Honours in Physics – University of Kelaniya (2017–2021) 🎓
    • Key Courses: Physics, Pure Mathematics, Electronics 📐
    • GPA: 3.57 (Second Upper Class) 🌟
  • G.C.E. Advanced Level Examination – Physical Science Stream (2016) 📜
  • G.C.E. Ordinary Level Examination – 2012 📝
💼 Experience
  • Temporary Demonstrator (Aug 2022 – Dec 2022) – Department of Physics & Electronics, University of Kelaniya 📊
  • Temporary Research Assistant (Dec 2022 – Oct 2024) – University of Kelaniya 🔬
  • Physicist (Dec 2024 – Present) – Sri Lanka Scientific Service 🧪

Suitability For The Award

Ms. Parami Ama Shakya, a dedicated physicist currently pursuing her M. Phil in Physics at the University of Kelaniya, Sri Lanka, is an outstanding candidate for the Best Researcher Award. With a B.Sc. Honours in Physics and a second upper class GPA of 3.57, Parami’s research has shown exceptional depth and innovation in the areas of thin-film electroplating, photoanode design for solar cells, and electrochemical properties of materials. Her continued research contributions have demonstrated her potential as a leading figure in the realm of material science and renewable energy applications.

Professional Development 

Publications Top Notes

“A Study on Cu Thin-Film Electroplated TiO₂ Photoanodes for Applications in Natural Dye-Sensitized Solar Cells,Crystals, 2024 📄 “

 

Zengyan Wei | Materials Science | Best Researcher Award

Zengyan Wei | Materials Science | Best Researcher Award

Dr. Zengyan Wei, Harbin Institute of Technology, China.

Publication profile

Scopus
Orcid
Googlescholar

Education and Experience

Education 🎓
  • Ph.D. (Chemistry) – City University of New York, USA (2009–2015)
  • M.Eng. (Materials Science) – Beijing University of Chemical Technology, PRC (2004–2007)
  • B.Eng. (Polymer Materials and Engineering) – Zhengzhou University, PRC (2000–2004)
Experience 🏢
  • Associate Professor – Harbin Institute of Technology, China (2023–Present)
  • Lecturer – Harbin Institute of Technology, China (2015–2022)
  • Visiting Lecturer – CUNY–Hunter College, USA (2015)
  • Adjunct Lecturer/Research Assistant – CUNY–Hunter College, USA (2009–2015)
  • Guest Researcher – Chinese Academy of Sciences, Beijing (2007–2008)
  • Research Assistant – Beijing University of Chemical Technology (2004–2007)

Suitability For The Award

Dr. Zengyan Wei is highly suited for the Best Researcher Award due to his impressive academic background and significant contributions to chemistry and materials science. His Ph.D. from CUNY, along with his roles at renowned institutions such as Harbin Institute of Technology and CUNY–Hunter College, showcases his expertise. His pioneering research on advanced materials, nanomaterials, and energy-related technologies has had a profound impact, demonstrating his exceptional qualifications for this prestigious recognition.

Professional Development 

Awards and Honors

  • Academic Excellence Award – City University of New York 🏅
  • Outstanding Researcher Award – Harbin Institute of Technology 🏆
  • Best Visiting Scholar Recognition – Chinese Academy of Sciences 🌟
  • Graduate Scholarship – Beijing University of Chemical Technology 🎓
  • Young Faculty Achievement Award – Harbin Institute of Technology 🎖️

Publications

  • Biocompatible PEG‐chitosan@carbon dots hybrid nanogels – Cited by: 238 | Year: 2015 | 🧪✨🔬
  • O-, N-Coordinated single Mn atoms accelerating polysulfides transformation – Cited by: 191 | Year: 2021 | ⚡🔋🧩
  • Magnetic iron oxide–fluorescent carbon dots integrated nanoparticles – Cited by: 169 | Year: 2014 | 🧲🌟📸
  • Responsive polymer–fluorescent carbon nanoparticle hybrid nanogels – Cited by: 124 | Year: 2014 | 🌡️💊🔍
  • Fe₃O₄/carbon quantum dots hybrid nanoflowers – Cited by: 100 | Year: 2014 | 🌻🔆🧪
  • Near-infrared-and visible-light-enhanced metal-free catalytic degradation – Cited by: 82 | Year: 2015 | ♻️🌱💡
  • Rational strategy for shaped nanomaterial synthesis – Cited by: 79 | Year: 2014 | 🧬🛠️🔗
  • MXene‐Boosted Imine Cathodes for Aqueous Zinc‐Ion Batteries – Cited by: 76 | Year: 2022 | 🔋⚙️🌌
  • Porous carbon protected magnetite and silver hybrid nanoparticles – Cited by: 66 | Year: 2013 | 🧪🔬🎨