Ivana Vasovic Maksimovic | Structural Integrity | Best Researcher Award

Ivana Vasovic Maksimovic | Structural Integrity | Best Researcher Award

Dr. Ivana Vasovic Maksimovic, University of Belgrade , Serbia.

Publication profile

Orcid

Education

    • PhD, Mechanical Engineering, University of Belgrade, Serbia (2009–2015) 🎓
    • MSc in Mechanical Engineering, University of Belgrade, Serbia (2001–2008) 🎓
    • International Welding Engineer (IWE), Institute Gosa, Serbia (2014–2015) 🔧
    • International Welding Inspector (IWI-C), Institute Gosa, Serbia (2016) 🔍

Experience

    • Scientific Director, Lola Institute Ltd, Belgrade, Serbia (2019–present) 🏢
    • Research Associate, Lola Institute Ltd, Belgrade, Serbia (2018–2019) 🔬
    • Research Associate, Innovation Center, University of Belgrade, Serbia (2016–2018) 🔍
    • Research Associate, Institute Gosa, Belgrade, Serbia (2015–2016) 🔬
    • Research Assistant, Institute Gosa, Belgrade, Serbia (2009–2015) 🔬
    • Research Trainee, Institute Gosa, Belgrade, Serbia (2008–2009) 📈

Suitability for The Award

Dr. Ivana Vasovic Maksimovic, PhD, is a highly qualified candidate for the Best Researcher Award, distinguished by her exceptional contributions to the field of Mechanical Engineering, particularly in welding technologies, structural integrity, and fatigue analysis of materials. Her academic journey, beginning with her Master’s degree at the Faculty of Mechanical Engineering, University of Belgrade, has evolved into a successful research career, encompassing roles as a research trainee, assistant, associate, and scientific director. Ivana’s leadership in various research projects, both nationally and internationally, alongside her extensive publication record, underscores her influence and commitment to advancing the field.

Professional Development (💼🔬)

Research Focus 🧫🧬

Awards and Honors (🏆🎖️)

  • Best Researcher Award, Lola Institute Ltd, Serbia 🏆
  • Member, Serbian Welding Society 🌟
  • Member, European Structural Integrity Society (ESIS) 🌍
  • Contributor to National Projects on Engineering Innovations 🎖️

Publication Top Notes

Conclusion

Dr. Ivana Vasovic Maksimovic’s comprehensive research portfolio and commitment to advancing mechanical engineering make her a strong candidate for the Best Researcher Award. Her innovative contributions to welding technologies and fatigue analysis, along with her collaborative spirit and leadership in national and international projects, highlight her potential to drive impactful advancements in engineering practices. Recognizing her achievements would not only honor her contributions but also inspire future generations of researchers in the field.

Mabrouka Ghiloufi | Nanocomposites | Environmental Innovation Award

Mabrouka Ghiloufi | Nanocomposites | Environmental Innovation Award

Dr.Mabrouka Ghiloufi , Faculty of Sciences of Bizerte, Tunisia.

Publication profile

Orcid

Scopus

Education & Experience

  • 🎓 Ph.D. (2022–Present), Faculty of Sciences of Bizerte, Tunisia – Inorganic Chemistry
  • 🎓 Research Master (2019–2021), Faculty of Sciences of Bizerte, Tunisia – Inorganic Chemistry
  • 🎓 Bachelor (2015–2019), Faculty of Sciences of Bizerte, Tunisia – Chemistry
  • 🧪 Ph.D. Research Intern (2024–Present), Hof University of Applied Sciences, Germany – Photocatalysis
  • 🧪 Research Intern (2023), Hof University of Applied Sciences, Germany – TiO2 Photocatalytic Efficiency
  • 🧫 Student Researcher (2021), National Institute of Research, Tunisia – Nanocomposites for Degradation of Levofloxacin

Suitability for The Award

Dr.Mabrouka Ghiloufi is a commendable candidate for the Environmental Innovation Award, given her dedicated research in photocatalysis and her focus on developing nanocomposites for the degradation of pharmaceutical pollutants. As a Ph.D. student at the National Institute of Research and Physiochemical Analysis in Tunisia, she has actively contributed to the synthesis and characterization of TiO2-based nanocomposites, which are pivotal in addressing environmental contamination caused by pharmaceuticals. Her research not only emphasizes innovative solutions for pollution degradation but also explores the efficiency of these materials under various irradiation conditions, showcasing her commitment to advancing sustainable environmental technologies.

Professional Development (💼🔬)

Research Focus 🧫🧬

Awards and Honors (🏆🎖️)

  • 🏅 Publication: “Investigation of the Effect of Oxide Additives on TiO2 Photocatalytic Efficiency,” Materials, 2024
  • 🏅 Publication: “Photocatalytic Activity of Ternary-Based-TiO2 Nanocomposite,” Inorganic and Nano-Metal Chemistry, 2024
  • 🎖 Workshop Attendance: Design of Experiments (DOE) using NemrodW Software, 2023
  • 🎖 Conference Attendance: 21st Tunisia Chemistry Conference, 2022
  • 🏆 Workshop Completion: Train the Trainer on Chemical Neutralization, USA, 2022

 

Publication Top Notes

  1. Investigation of the Effect of Oxide Additives on the Band Gap and Photocatalytic Efficiency of TiO2 as a Fixed Film
    Ghiloufi, M., Schnabel, T., Mehling, S., Kouass, S.
    Published: 2024, Cited by: 0 📄
  2. Stability of power systems integrating renewable energy: Modal analysis of linear dynamic systems
    Ghiloufi, M., Sbita, L.
    Published: 2024, Cited by: 0 📖
  3. Photocatalytic activity and electrochemical properties of a ternary-based-TiO2 nanocomposite
    Ghiloufi, M., Trifi, B., Kouass Sahbani, S., Dhaouadi, H., Kouass, S.
    Published: 2024, Cited by: 0 📜
  4. Impact of High Renewable Integration on Interarea Oscillations. Koopman Modal Analysis
    Boussaa, Y., Ghiloufi, M., Jlassi, Z., Ben Kilani, K., Elleuch, M.
    Published: 2022, Cited by: 0 📊

Conclusion

Dr.Mabrouka Ghiloufi Ghiloufi’s academic background, research initiatives, and collaborative efforts position her as a strong contender for the Environmental Innovation Award. Her work on photocatalytic nanocomposites addresses critical environmental challenges and demonstrates a commitment to innovative research that aligns with the award’s goals. Awarding her this recognition would not only honor her contributions but also encourage further advancements in sustainable practices within the field of chemistry.

Zijian Wang | Properties and Performance | Best Researcher Award

Dr. Zijian Wang | Properties and Performance | Best Researcher Award

Dr. Zijian Wang, Changchun University of Science and Technology, China

Dr. Zijian Wang is an Assistant Researcher at Changchun University of Science and Technology’s School of Physics. He earned his PhD in Laser and Its Interaction with Matter (2016) and has a robust background in optics. His research focuses on advanced laser technologies, including hybrid integrated semiconductor lasers and optical parametric oscillators. Dr. Wang has led several significant projects, receiving funding from the National Natural Science Foundation of China and the Jilin Provincial Department of Science and Technology. He is committed to innovative research in laser applications, contributing to both academic and practical advancements in the field. 🔬✨

 

Publication profile

Scopus

Educational Background

Dr. Wang has a solid educational foundation, having earned his PhD in Laser and Its Interaction with Matter from Changchun University of Science and Technology. This academic background in optics and laser technology is relevant to contemporary research in the field.

Professional Experience

He has served as an Assistant Researcher at Changchun University of Science and Technology since 2016, gaining valuable research experience. His roles have involved significant contributions to various research projects, demonstrating his active engagement in advancing scientific knowledge.

Research Projects

Dr. Wang has participated in notable projects funded by the National Natural Science Foundation of China, focusing on cutting-edge topics such as hybrid integrated chirped semiconductor lasers and infrared self-converting lasers. His involvement in these high-stakes projects reflects his capability and dedication to impactful research.

Recognition and Awards

His receipt of the Science and Technology Progress Award signifies his research’s impact and the esteem in which his work is held. Such recognition is vital for a candidate for the Best Researcher Award, as it showcases both his achievements and contributions to the scientific community.

Publication Top Notes

  • Compact, thermally boosted direct pumped Nd:MgO

    , mid-infrared self-optical parametric oscillatorOptics and Laser Technology (2025) – 0 citations 📄✨

  • 3-W, 3.8 µm self-optical parametric oscillator by pulsed pumping based on Nd:MgO

    crystalOptics Express (2024) – 0 citations 🔬🌟

  • Study on narrow linewidth 2.1 μm self-optical parametric oscillator based on Nd:MgO

    Infrared Physics and Technology (2024) – 0 citations 📉🔍

  • A π-polarized 1084 nm laser with pump pulse modulation based on Nd:MgO

    crystalOptics and Laser Technology (2024) – 1 citation 💡🔄

  • Mid-infrared dual-wavelength power regulation and linewidth narrowing using an F-P etalon in a multi-optical parametric oscillator based on MgO: APLNInfrared Physics and Technology (2023) – 2 citations 🌈🔧
  • 1.5 μm passively Q-switched self frequency conversion optical parametric oscillator based on Nd3+ doped MgO

    with the multi-focus end-face coupling pumping modeOptics and Laser Technology (2023) – 3 citations 🚀🔗

  • Comparison of back conversion and power differential in extra-cavity multi-optical parametric oscillator using MgO

    Optics and Laser Technology (2023) – 0 citations ⚖️🔬

  • Study on π-polarized 1084 nm CW laser based on Nd3+ doped MgO

    with the end-face double-focus coupling pumping modeOptics and Laser Technology (2023) – 0 citations 🔦🔄

  • Study on mid-infrared optical parametric oscillator based on MgO

    pumped by narrow linewidth 1064 nm fiber laserInfrared and Laser Engineering (2022) – 0 citations 🌌📡

  • Study on linewidth compression at 3.8 μm with multiple F-P etalon pumped by compound intra-cavity optical parametric oscillatorInfrared Physics and Technology (2022) – 3 citations 📏🔧


Conclusion

Given his strong educational background, significant research contributions, leadership roles, innovative achievements, and recognition through awards, Dr. Zijian Wang exemplifies the qualities sought in a candidate for the Research for Best Researcher Award. His ongoing research endeavors position him well for future advancements in his field, making him a deserving nominee for this honor.

 

 

Haiyun Wang | Materials Science | Best Researcher Award

Haiyun Wang | Materials Science | Best Researcher Award

Dr. Haiyun Wang , University of Sheffield, China.

Dr. Haiyun Wang is an accomplished materials scientist with a PhD in Engineering Materials from the University of Sheffield, UK (2019). Specializing in aerospace materials and composite materials, she has made significant contributions to microstructure control, fatigue life prediction, and atomic-scale studies of advanced materials. With a strong background in designing bulk metallic glass composites and working on cutting-edge company projects, she is known for her innovative approach to material engineering. Dr. Wang’s research focuses on developing and optimizing materials for industrial applications, making her a key contributor to advancements in materials science🌟🔬

📚🔬Publication Profile

Orcid

Suitability For The Award

Haiyun Wang is a highly deserving candidate for the Best Researcher Awards, having made significant contributions to the field of engineering materials, particularly in composite materials and metallic glasses. With a PhD in Engineering Materials from the University of Sheffield, he possesses a strong academic foundation, complemented by a Master’s degree in Aerospace Materials.

Education & Experience:

  • 🎓 PhD: Engineering Materials, University of Sheffield, UK (2019)
  • 🎓 MSc: Aerospace Materials, University of Sheffield, UK (2013)
  • 🧑‍🔬 Extensive experience in material microstructure analysis and fatigue life modeling
  • ⚙️ Specialized in high-strength aluminum alloys and bulk metallic glass composites
  • 🏭 Collaborated on industry-specific projects involving powder metallurgy and 3D printing

Professional Development

Dr. Haiyun Wang has been a key player in several high-impact research projects, focusing on material microstructures, fatigue prediction models, and advanced composite materials. She developed new techniques to optimize the mechanical properties of SiCp/Al composites and CuZr-based bulk metallic glass composites, enhancing their industrial applicability. Her experience spans atomic-scale research, heat treatment processes, and dynamic deformation damage analysis. Dr. Wang’s continuous learning and dedication to her field have equipped her with cutting-edge expertise, making her a significant force in materials science and engineering. 💡🔧

Research Focus

Dr. Haiyun Wang’s research focuses on materials science, with a specialization in composite materials and bulk metallic glass composites. Her work on SiCp/Al composites involves microstructure control and fatigue life prediction, while her projects on CuZr-based alloys explore phase separation and mechanical property optimization. She also delves into high-strength aluminum alloys, improving their microstructure through processes like Selective Laser Melting (SLM). With a strong foundation in atomic-scale studies and material evolution, her research has critical applications in aerospace and industrial manufacturing. 🧬⚛️

Awards and Honors 🏆✨

  • 🏅 Recognized for groundbreaking research in composite materials
  • 🌟 Best Dissertation Award, PhD Thesis on SiCp/Al Composites
  • 🏆 Published in leading journals on materials science
  • 🔬 Awarded for contributions to company projects on bulk metallic glasses
  • 🥇 Recipient of scholarships during MSc and PhD studies

Publications 📚📝

Conclusion

Haiyun Wang’s diverse research portfolio demonstrates a profound understanding of material behavior and innovative approaches to material design and processing. His contributions advance academic knowledge and have practical implications for industries relying on high-performance materials. Given his impactful research, dedication to innovation, and commitment to enhancing material properties, he stands out as a leading figure in the field of engineering materials, making him an exemplary candidate for the Best Researcher Awards.

Jawad Faiz | Electrical Machines | Best Researcher Award

Prof Dr. Jawad Faiz | Electrical Machines | Best Researcher Award

Professor at University of Tehran , Iran

Dr. Jawad Faiz is a distinguished professor in the School of Electrical and Computer Engineering at the University of Tehran. With extensive contributions to the field of electrical engineering, his work spans the design, modeling, and control of various electrical machines, including induction generators and switched reluctance machines. His research has significantly advanced fault diagnosis techniques and condition monitoring in electrical systems.

Profile

ORCID Profile

Scopus Profile

Google Scholar

Author Metrics

Dr. Faiz is a highly cited researcher with numerous influential publications. His work has appeared in leading journals such as IEEE Transactions and IET. Notably, he has authored papers on fault diagnosis in motors, stator current monitoring, and advanced diagnostic techniques. His research is recognized globally, and he is listed among the top 1% of scientists in his field.

Education

Dr. Faiz holds a Ph.D. in Electrical Engineering from the University of Newcastle upon Tyne, UK, awarded in June 1988. He completed his M.Sc. and B.Sc. in Electrical Engineering at the University of Tabriz, Iran, in July 1975 and November 1974, respectively.

Research Focus

Dr. Faiz’s research interests encompass the design and modeling of electrical machines, including induction generators and switched reluctance machines. His work also focuses on fault diagnosis, condition monitoring, and energy recovery in motors. He has developed advanced techniques for detecting faults and optimizing performance in electric vehicles, transformers, and other electrical systems.

Professional Journey

Dr. Faiz has held numerous academic and administrative positions throughout his career. He served as Director of Educational Affairs and Dean of the Faculty of Engineering at the University of Tabriz. At the University of Tehran, he has been Vice-Dean of Graduate Studies and Director of the Center of Excellence on Applied Electromagnetic Systems. His leadership has greatly contributed to the development of research and educational programs in electrical engineering.

Honors & Awards

Dr. Faiz has received numerous accolades for his contributions to engineering and research. These include the Kharazmi International Festival 1st Prize for Basic Research (2007), the Einstein Golden Model Award from UNESCO (2007), and multiple awards from the University of Tehran for his research and book publications. He is also recognized as a Distinguished Researcher and Elite Professor by various Iranian institutions.

Publications Noted & Contributions

Dr. Faiz has authored and co-authored several significant books and papers in his field. His notable publications include “Electronic Tap-changer for Distribution Transformers” and “Fault Diagnosis of Induction Motors.” His translations of key electrical engineering texts into Persian have made substantial contributions to the academic resources available in Iran.

Research Timeline

Dr. Faiz’s research has evolved from foundational studies in electrical machines to advanced diagnostic techniques and modeling of electrical systems. His work has progressively addressed critical challenges in fault detection and energy efficiency, reflecting the advancements in electrical engineering over the decades.

Collaborations and Projects

Throughout his career, Dr. Faiz has collaborated with leading researchers and institutions globally. His projects often involve multi-disciplinary approaches, combining theoretical modeling with practical applications to address complex issues in electrical engineering. His collaborations have significantly enhanced the scope and impact of his research.

Publications

  1. Static-, Dynamic-, and Mixed-Eccentricity Fault Diagnoses in Permanent-Magnet Synchronous Motors
    Authors: BM Ebrahimi, J Faiz, MJ Roshtkhari
    Journal: IEEE Transactions on Industrial Electronics
    Year: 2009
    Volume and Pages: 56 (11), 4727-4739
    Citations: 404
    This paper presents methods for diagnosing various types of eccentricity faults (static, dynamic, and mixed) in permanent-magnet synchronous motors (PMSMs). The focus is on the diagnostic techniques used to identify these faults and their impact on motor performance.
  2. Advanced Eccentricity Fault Recognition in Permanent Magnet Synchronous Motors Using Stator Current Signature Analysis
    Authors: BM Ebrahimi, MJ Roshtkhari, J Faiz, SV Khatami
    Journal: IEEE Transactions on Industrial Electronics
    Year: 2013
    Volume and Pages: 61 (4), 2041-2052
    Citations: 281
    This paper improves upon the fault recognition techniques for PMSMs, particularly focusing on advanced methods for detecting eccentricity faults using stator current signature analysis. It highlights the effectiveness of this approach in identifying fault conditions.
  3. Dissolved Gas Analysis Evaluation in Electric Power Transformers Using Conventional Methods: A Review
    Authors: J Faiz, M Soleimani
    Journal: IEEE Transactions on Dielectrics and Electrical Insulation
    Year: 2017
    Volume and Pages: 24 (2), 1239-1248
    Citations: 241
    This review paper evaluates conventional methods for dissolved gas analysis (DGA) in electric power transformers. It discusses various techniques and their effectiveness in assessing transformer health and diagnosing faults.
  4. Extension of Winding Function Theory for Nonuniform Air Gap in Electric Machinery
    Authors: J Faiz, I Tabatabaei
    Journal: IEEE Transactions on Magnetics
    Year: 2002
    Volume and Pages: 38 (6), 3654-3657
    Citations: 218
    This paper extends the winding function theory to account for nonuniform air gaps in electric machinery. The extension provides more accurate modeling of electrical machines, improving the understanding and analysis of their performance.
  5. Feature Extraction for Short-Circuit Fault Detection in Permanent-Magnet Synchronous Motors Using Stator-Current Monitoring
    Authors: BM Ebrahimi, J Faiz
    Journal: IEEE Transactions on Power Electronics
    Year: 2010
    Volume and Pages: 25 (10), 2673-2682
    Citations: 217
    This paper discusses methods for feature extraction aimed at detecting short-circuit faults in PMSMs by monitoring stator currents. It emphasizes the use of current monitoring techniques to enhance fault detection capabilities.
  6. Finite-Element Transient Analysis of Induction Motors Under Mixed Eccentricity Fault
    Authors: J Faiz, BM Ebrahimi, B Akin, HA Toliyat
    Journal: IEEE Transactions on Magnetics
    Year: 2007
    Volume and Pages: 44 (1), 66-74
    Citations: 213
    This paper utilizes finite-element transient analysis to study induction motors affected by mixed eccentricity faults. The analysis provides insights into the performance and behavior of motors under these fault conditions.
Strength for Best Researcher Award
  1. Innovative Fault Diagnosis Techniques
    Dr. Faiz has pioneered advanced methods for diagnosing eccentricity faults in permanent-magnet synchronous motors and other electrical systems. His innovative approaches have significantly improved fault detection and system reliability.
  2. High Citation Impact
    His publications, including influential papers on fault diagnosis and current signature analysis, have garnered substantial citations, highlighting the impact and relevance of his research in the field.
  3. Comprehensive Research Focus
    Dr. Faiz’s research encompasses a broad range of topics, from the design and modeling of electrical machines to fault diagnosis and energy recovery. This wide-ranging expertise contributes to a holistic understanding of electrical systems.
  4. Educational Contributions
    His role in educating and mentoring students and professionals in electrical engineering has been pivotal. His teaching and publications have enriched academic resources and advanced knowledge in his field.
  5. Recognition and Awards
    Dr. Faiz’s numerous accolades, including the Kharazmi International Festival 1st Prize and the Einstein Golden Model Award, reflect his esteemed position in the research community and his contributions to advancing electrical engineering.

Areas for Improvement

  1. Broader Interdisciplinary Collaboration
    While Dr. Faiz has collaborated with many researchers, expanding his interdisciplinary partnerships could further enhance the application and impact of his work across different fields.
  2. Increased Focus on Emerging Technologies
    Emphasizing emerging technologies such as renewable energy systems and smart grids could align his research with current and future industry trends, ensuring its continued relevance.
  3. Publication in Newer High-Impact Journals
    Publishing in newer or more diverse high-impact journals could broaden the reach of his research and attract attention from a wider audience within and outside the electrical engineering community.
  4. Enhanced Industry Engagement
    Strengthening ties with industry stakeholders and participating in industry-driven projects could facilitate practical applications of his research and drive innovation in real-world scenarios.
  5. Development of Advanced Research Tools
    Investing in the development or adoption of advanced research tools and methodologies could enhance the precision and scope of his studies, leading to more robust and comprehensive findings.

Conclusion

Dr. Jawad Faiz’s distinguished career is marked by his significant contributions to electrical engineering, particularly in fault diagnosis and machine modeling. His research has had a profound impact, evidenced by high citation rates and prestigious awards. Despite his many strengths, there is room for growth in areas such as interdisciplinary collaboration and industry engagement. Addressing these areas could further amplify his research impact and align it with contemporary technological advancements, ensuring continued relevance and innovation in the field.

.