Rumyana Lazarova | Materials Science | Best Researcher Award

Rumyana Lazarova | Materials Science | Best Researcher Award

Prof. Dr. Rumyana Lazarova, Institute of Metal Science, Equipment and Technologies with Hydro- and Aerodynamics Centre, Bulgaria.

Yong Yu | Materials | Best Researcher Award

Yong Yu | Materials | Best Researcher Award

Dr. Yong Yu , Qingdao University of Technology , China.

Dr. Yong Yu is a dedicated researcher in civil engineering at the School of Civil Engineering, Qingdao University of Technology, China. His expertise lies in high-performance concrete, crumb rubber concrete, and steam-cured concrete. With a strong academic background and a passion for sustainable materials, Dr. Yu has contributed extensively to advancing concrete technology. His research aims to enhance durability, eco-friendliness, and structural performance in construction. He actively collaborates with academia and industry to implement innovative solutions in civil engineering. 📚🔬🏢

Publication Profile

Orcid
Scopus

Education & Experience 📖👷

  • Ph.D. in Civil Engineering – Specialized in advanced concrete materials 🎓🏗️
  • Professor at Qingdao University of Technology – Leading research in sustainable concrete 🏫🔬
  • Industry Collaboration – Works with construction firms on eco-friendly materials 🤝🏢
  • Published Researcher – Numerous papers on high-performance and rubberized concrete 📄📊

Suitability summary

Dr. Yong Yu, a distinguished researcher at the School of Civil Engineering, Qingdao University of Technology, China, is an exceptional candidate for the Best Researcher Award. His groundbreaking contributions to high-performance concrete, crumb rubber concrete, and steam-cured concrete have significantly advanced sustainable and durable construction materials. His expertise in optimizing concrete properties for enhanced strength, durability, and eco-friendliness makes him a leading innovator in civil engineering. 📚🌍

Professional Development 🔬🏗️

Dr. Yong Yu actively engages in cutting-edge research on sustainable concrete materials. His contributions focus on enhancing durability, strength, and environmental benefits in construction. He regularly publishes in top-tier journals, presents at international conferences, and collaborates with industry experts to develop innovative solutions. As a mentor, he supervises students and researchers in civil engineering, guiding them towards practical and impactful research. His work not only advances theoretical knowledge but also influences real-world construction practices, ensuring a balance between strength and sustainability🌍🏗️📚

Research Focus 🔍🏢

Dr. Yong Yu’s research is centered on developing high-performance, durable, and eco-friendly concrete materials. His focus includes:

  • High-Performance Concrete (HPC): Enhancing durability, strength, and resistance to extreme conditions 🏗️💪
  • Crumb Rubber Concrete: Utilizing recycled rubber to improve flexibility and sustainability 🌱♻️
  • Steam-Cured Concrete: Optimizing rapid curing processes for efficient construction 🏭🔥

His studies contribute to reducing carbon footprints, improving material longevity, and promoting sustainable construction worldwide. 🌍🔬🏢

Awards & Honors 🏆🎖️

  • Outstanding Researcher Award – Recognized for contributions to concrete innovation 🏅🏗️
  • Best Paper Award – Published groundbreaking research in material science 📜🏆
  • Excellence in Teaching Award – Acknowledged for mentoring and academic leadership 🎓👨‍🏫
  • Industry Innovation Recognition – Collaborated on sustainable construction projects 🏢♻️

Publication Top Notes

  • 🧪 “Molecular and structural basis of the dual regulation of the polycystin-2 ion channel by small-molecule ligands” (2024) – Proceedings of the National Academy of Sciences
  • 🧬 “Structural basis for human Cav1.2 inhibition by multiple drugs and the neurotoxin calciseptine” (2023) – Cell
  • 🔬 “The diverse effects of pathogenic point mutations on ion channel activity of a gain-of-function polycystin-2” (2023) – Journal of Biological Chemistry
  • 🧫 “Structures of the R-type human Cav2.3 channel reveal conformational crosstalk of the intracellular segments” (2022) – Nature Communications
  • 🧩 “Structural basis for the severe adverse interaction of sofosbuvir and amiodarone on L-type Cav channels” (2022) – Cell
  • 🧪 “The roles of two extracellular loops in proton sensing and permeation in human Otop1 channel” (2022) – Communications Biology
  • 🧬 “The ion channel TRPM7 regulates zinc depletion-induced MDMX degradation” (2021) – Journal of Biological Chemistry

 

Jiaojiao Li | Advanced Materials | Best Researcher Award

Jiaojiao Li | Advanced Materials | Best Researcher Award

Dr. Jiaojiao Li , North University of China, China.

Dr. Jiaojiao Li is a lecturer at the North University of China, specializing in slip avalanches in advanced materials and complex systems. Her research encompasses a variety of materials, including bulk metallic glasses (BMGs), high-entropy alloys (HEAs), Al-Mg alloys, special vehicles, and even seismic activity related to earthquakes. Dr. Li’s work focuses on the universal scaling behavior of slip avalanches and their correlation with material structure and mechanical properties. She provides valuable insights into the deformation mechanisms of materials, aiding in the development of advanced, high-performance materials for industrial applications. 📚🔬⚙️

Publivation Profiles

Scopus

Education and Experience

  • Ph.D. in Materials Science – North University of China 📜
  • Lecturer – North University of China 🎓
  • Research Interests: Slip avalanches, bulk metallic glasses (BMGs), high-entropy alloys (HEAs), Al-Mg alloys, mechanical properties, advanced materials 🧪
  • Research Projects: Funded by Shanxi Province and national key labs 🏆

Suitability summary for best researcher Award

Dr. Jiaojiao Li, a Lecturer at North University of China, is a leading researcher in the field of advanced materials, specializing in the study of slip avalanches in complex systems. Her significant contributions to understanding the mechanical properties and deformation mechanisms of materials like bulk metallic glasses (BMGs)high-entropy alloys (HEAs), and Al-Mg alloys make her an exemplary candidate for the Best Researcher Award. Through her innovative work, Dr. Li has elucidated universal scaling laws of slip avalanches, providing crucial insights into the mechanical behavior of advanced materials under stress.

Professional Development

Dr. Li has been actively involved in multiple national and international research projects, focusing on advanced materials and their mechanical behaviors. Her contributions to the understanding of slip avalanches in materials like BMGs and HEAs have garnered recognition in both academic and industrial circles. She has also been part of collaborative efforts with prestigious research institutions and industry leaders, continuously advancing her expertise in the fields of materials science and mechanical engineering. Dr. Li’s development in both research and teaching ensures the continued progress of innovative materials for future technologies. 🔍💡🌍

Research Focus

Dr. Jiaojiao Li’s research focuses on the mechanical properties of advanced materials, particularly in understanding the behavior of slip avalanches in bulk metallic glasses (BMGs), high-entropy alloys (HEAs), and Al-Mg alloys. She explores the scaling behavior of slip avalanches and how they relate to material structure and mechanical performance. This research offers insights into deformation mechanisms, aiding the design of new materials with optimized properties for applications in various industries, including automotive and seismic engineering. Dr. Li’s work is essential for the future development of stronger, more reliable materials in complex systems. 🔬🛠️💡

Awards And Honours

  • Fundamental Research Program of Shanxi Province – Research Grant 🏅
  • Opening Projects of 24 National Key Laboratory of Special Vehicle Design – Research Grant 💼
  • Shanxi Provincial Key Laboratory for Advanced Manufacturing Technology – Research Grant 🔧
  • Best Paper Award – Materials & Design Journal 🌟

Publication Top Noted

  • Power-law scaling between mean stress drops and strain rates in bulk metallic glasses (2016) 📚 (Cited by: 48)
  • University of slip avalanches in a ductile Fe-based bulk metallic glasses (2017) 🧪 (Cited by: 10)
  • Temperature rises during strain-rate dependent avalanches in bulk metallic glasses (2020) 🔥 (Cited by: 12)
  • Seismic-like size dynamics of slip avalanches in bulk metallic glasses (2020) 🌍 (Cited by: 10)
  • Slip Statistics for a Bulk Metallic Glass Treated by Cryogenic Thermal Cycling Reflect Its Optimized Plasticity (2024) 🔧 (Cited by: 0)
  • Ordered sulfonated polystyrene particle chains organized through AC electroosmosis as reinforcing phases in Polyacrylamide hydrogels (2024) 💡 (Cited by: 2)
  • A Brief Overview of Temperature Rises During Shear Banding in Bulk Metallic Glasses (2024) 📈 (Cited by: 0)
  • Review on Abrasive Machining Technology of SiC Ceramic Composites (2024) ⚙️ (Cited by: 4)
  • Strain rate-dependent avalanches in bulk metallic glasses (2021) 💥 (Cited by: 4)

 

Yunchao Qi | Materials Science | Best Researcher Award

Yunchao Qi | Materials Science | China

Dr. Yunchao Qi, North University of China, China.

Dr. Yunchao Qi 🎓 is a distinguished researcher and educator specializing in engineering mechanics and materials science. He holds a Doctorate in Engineering from Harbin Institute of Technology and is currently affiliated with the School of Aerospace Engineering, North University of China. With expertise in the mechanical properties and structural design of composites and machine learning applications in materials engineering, he has published extensively in leading journals. Dr. Qi’s professional journey reflects his commitment to innovation and excellence in engineering, contributing to advancements in composites and materials science. 📚🔬

Publication Profile 

Scopus

Education and Experience

  • 🎓 Bachelor of Engineering in Engineering Mechanics, Northwestern Polytechnical University (2012–2016)
  • 🎓 Doctor of Engineering in Engineering Mechanics, Harbin Institute of Technology (2016–2022)
  • 💼 AVIC Chengdu Aircraft Industrial (Group) CO., Ltd., Chengdu, China (2023/02–2024/05)
  • 💼 North University of China, Taiyuan, China (2024/05–Present)

Summary Suitability For the Award

Dr. Yunchao Qi is an exemplary candidate for the Best Researcher Award, given his groundbreaking contributions to the field of engineering mechanics, particularly in the mechanical properties characterization and structural design of composites. His research seamlessly integrates advanced methodologies, such as machine learning, into materials engineering, significantly advancing both academic understanding and practical applications.

Professional Development

Dr. Yunchao Qi has actively developed his expertise through interdisciplinary research combining materials science, mechanical properties, and machine learning applications. 🌐 His innovative approaches have advanced the understanding of composites, including needled composites, their structural design, and thermal optimization using AI techniques. ✨ With over eight high-impact publications in prestigious journals and a solid academic foundation, Dr. Qi’s work bridges theory and application, enabling practical solutions in aerospace and material engineering. 🚀 His contributions to academia and industry highlight his dedication to fostering progress in mechanical engineering and composites. 🛠️📖

Research Focus

Dr. Yunchao Qi’s research centers on the mechanical properties characterization and structural design of composites, including needled and 3D fiber-reinforced materials. 📏🔍 He also explores machine learning applications in materials engineering, such as designing thermal cloaks with isotropic materials and optimizing composite structures. 🤖 His work integrates traditional engineering principles with cutting-edge AI methods to enhance the performance, reliability, and efficiency of advanced materials, significantly contributing to aerospace and materials science✈️🔬 Dr. Qi’s research showcases a fusion of innovation, sustainability, and practical implementation. 🌱

Awards and Honors

  • 🏆 Best Paper Award in Composite Materials at the National Engineering Conference, 2022.
  • 🥇 Recognized as “Outstanding Young Researcher” by Harbin Institute of Technology, 2020.
  • 📜 Recipient of the National Doctoral Research Fellowship, China, 2018–2021.
  • 🌟 Excellence in Innovation Award for Machine Learning Applications in Engineering, 2023.

Publication Top Notes 

  • 📖 In-plane tensile strength for needle-punched composites prepared by different needling processes, 2023, Chinese Journal of Materials Research, 1 citation.
  • 📖 Process design of variable fiber content in layers of needle-punched preforms, 2023, Journal of Materials Science.
  • 📖 Determination of needling process satisfying stiffness requirements of 3D needled composites, 2022, Polymer Composites, 5 citations.
  • 📖 Design of thermal cloaks with isotropic materials based on machine learning, 2022, International Journal of Heat and Mass Transfer, 21 citations.
  • 📖 An improved analytical method for calculating stiffness of 3D needled composites with different needle-punched processes, 2020, Composite Structures, 24 citations.
  • 📖 Optimization of process parameters of three-dimensional needled preforms for C/C-SiC composites, 2020, Journal of Materials Engineering, 5 citations.
  • 📖 The optimization of process parameters of three-dimensional needled composites based on ANN and GA, 2019, ICCM International Conferences on Composite Materials.

 

Parami Ama Shakya | Materials | Best Researcher Award

Parami Ama Shakya | Materials | Best Researcher Award

Ms. Parami Ama Shakya, University of Kelaniya, Sri Lanka.

Publication profile

Orcid

Education and Experience

📚 Education
  • M.Phil in Physics – University of Kelaniya (reading) 🎓
  • B.Sc. Honours in Physics – University of Kelaniya (2017–2021) 🎓
    • Key Courses: Physics, Pure Mathematics, Electronics 📐
    • GPA: 3.57 (Second Upper Class) 🌟
  • G.C.E. Advanced Level Examination – Physical Science Stream (2016) 📜
  • G.C.E. Ordinary Level Examination – 2012 📝
💼 Experience
  • Temporary Demonstrator (Aug 2022 – Dec 2022) – Department of Physics & Electronics, University of Kelaniya 📊
  • Temporary Research Assistant (Dec 2022 – Oct 2024) – University of Kelaniya 🔬
  • Physicist (Dec 2024 – Present) – Sri Lanka Scientific Service 🧪

Suitability For The Award

Ms. Parami Ama Shakya, a dedicated physicist currently pursuing her M. Phil in Physics at the University of Kelaniya, Sri Lanka, is an outstanding candidate for the Best Researcher Award. With a B.Sc. Honours in Physics and a second upper class GPA of 3.57, Parami’s research has shown exceptional depth and innovation in the areas of thin-film electroplating, photoanode design for solar cells, and electrochemical properties of materials. Her continued research contributions have demonstrated her potential as a leading figure in the realm of material science and renewable energy applications.

Professional Development 

Publications Top Notes

“A Study on Cu Thin-Film Electroplated TiO₂ Photoanodes for Applications in Natural Dye-Sensitized Solar Cells,Crystals, 2024 📄 “

 

Mahitosh Biswas | Materials | Best Researcher Award

Mahitosh Biswas | Materials | Best Researcher Award

Dr. Mahitosh Biswas , Universität Würzburg, Germany

📚🔬Publication Profile

Orcid

Suitability For The Award

Mahitosh Biswas is a highly qualified candidate for the Best Researcher Award, with a robust background in nanoscience and materials engineering. His research encompasses a range of advanced topics, particularly in molecular beam epitaxy and the development of functional oxide materials, positioning him as a leader in his field.

Education and Experience:

Professional Development

Dr. Mahitosh Biswas is committed to continuous professional development, focusing on cutting-edge research in materials science. His experiences span various institutions worldwide, where he has honed his skills in molecular beam epitaxy and advanced materials fabrication. Through supervising Ph.D. students and collaborating on significant research projects, he actively contributes to the academic community. His involvement in the ERC Advanced “CRYPTONIT” grant project underscores his leadership in innovative research initiatives. Dr. Biswas is dedicated to bridging the gap between theoretical knowledge and practical applications in materials engineering. 🌟🛠️

Research Focus

Dr. Mahitosh Biswas’s research primarily focuses on hybrid oxide molecular beam epitaxy (MBE) and the development of atomically engineered quantum materials. His work includes investigating the fundamental properties of ferroelectric complex perovskites and their integration into high-efficiency energy storage devices. He also explores the design and characterization of nanostructures and heterostructures for optoelectronic applications, including photodetectors and LEDs. His innovative research significantly advances the fields of piezoelectricity and ferroelectricity, aiming to enhance performance in flexible electronics and high-power devices. 🔬⚡

Awards and Honors 🏆✨

  • ERC Advanced Grant – “CRYPTONIT” (ongoing) 💡
  • Recognition for Contributions – Numerous collaborations and research publications 📜
  • Ph.D. Scholar – Indian Institute of Technology Bombay (2014-2017) 🏆

Publications 📚📝

Conclusion

Mahitosh Biswas’s extensive research experience, innovative contributions to nanotechnology, and commitment to academic excellence make him an outstanding candidate for the Best Researcher Award. His work not only advances scientific knowledge but also has significant implications for industry and technology, affirming his deservingness of this recognition.

Mr. Venkat reddy Yadavalli | Materials Award | Best Researcher Award

Mr. Venkat reddy Yadavalli | Materials Award | Best Researcher Award

Mr. Venkat reddy Yadavalli , Hochschule Kaiserslautern , Germany

Venkat Reddy Yadavalli is a highly skilled professional with a Master of Science degree in the Refinement of Polymer and Composite Products from Hochschule Kaiserslautern, Germany, and a Bachelor of Technology in Mechanical Engineering from Anurag Group of Institutions, Hyderabad, India. With hands-on experience in Additive Manufacturing, Injection Molding, Extrusion Molding, and Mechanical Testing, Venkat has significantly contributed to the enhancement of composite structures by analyzing their mechanical properties. His expertise spans across Composite Materials, Carbon Fiber Research, and Polymers, supported by strong technical skills in SolidWorks, Ansys, MS Office, and Prusa Slicing software. He has also published research on recycling high-performance fluoro-elastomers. Throughout his academic and professional journey, Venkat has held roles as a student assistant and intern, focusing on developing and testing new polymer composites, performing mechanical and thermal tests, and documenting the results. Notably, his work includes developing a new thermoplastic glass fiber composite and investigating mechanical properties of composites using various manufacturing processes.

🌐 Professional Profile:

Scopus

Areas of Expertise:

  • 🏭 Additive Manufacturing
  • 🛠️ Injection Molding
  • 🔄 Extrusion Molding
  • ⚙️ Mechanical Testing
  • 🔬 Composite Materials
  • 🧵 Carbon Fiber Research
  • 🧪 Polymers
  • 💻 MS Office

Education:

Master of Science (M.Sc.) in Refinement of Polymer and Composite Products
03/2020 – 03/2024
Hochschule Kaiserslautern, Pirmasens, Germany

  • Overall Grade: 2.88
  • Focus Areas: Material Sciences, Material Surface Characterization, Refinement of Polymers, Composites and Textiles, Additive Manufacturing

Bachelor of Technology (B.Tech.) in Mechanical Engineering
03/2015 – 04/2019
Anurag Group of Institutions, Hyderabad, India

  • Overall Grade: 1.95
  • Focus Areas: Material Science, Metallurgy, Automobile Engineering, Production Technology, Operational Research, Industrial Management, and Production Planning and Control

Thesis Projects:

Bachelor’s Thesis:
Mechanical Properties Enhancement of CFR and GFR Composite Laminates with VARTM Process
10/2018 – 05/2019
Anurag Group of Institutions, Hyderabad, India

  • Enhanced composite structures using vacuum bag molding
  • Conducted structural analysis and evaluation of design efficiency, internal forces, stresses, and stability
  • Analyzed mechanical properties such as hardness, roughness, tensile strength, and impact strength

Master’s Thesis:
Preparation and Characterization of Two-Component Injection Molded Products
09/2023 – Present
Tomas Bata University, Zlín, Czech Republic

  • Developed new thermoplastic glass fiber composite with Elium resin using RTM process
  • Conducted material characterizations DMA, TGA, and DSC for the composite
  • Overmolded Elium composite with PBT using injection molding
  • Performed three surface modifications to achieve high mechanical strength

Work Experience:

Internship
01/2023 – 07/2023
Think 3DD, Berlin, Germany

  • Worked with trending polymers such as TPU (Thermoplastic Polyurethane) in 3D Printing
  • Performed mechanical tests including tensile and 3-point bending
  • Conducted process evaluation and project documentation, analyzing test results

Academic Project: Development of Polymer
08/2022 – 01/2023
Hochschule Kaiserslautern, Pirmasens, Germany

  • Manufactured polymer samples of ABS (Acrylonitrile Butadiene Styrene)
  • Produced testing samples through 3D printing, injection, and compression molding
  • Performed mechanical tensile tests at different speeds and analyzed test results

Student Assistant – Material Development
05/2021 – 12/2021
Hochschule Kaiserslautern, Pirmasens, Germany

  • Worked with polyamide and composite processing methods including 3D printing, vacuum-assisted resin transfer molding, injection molding, and extrusion
  • Conducted mechanical and thermal tests, and documented results
  • Assisted other students with projects and supervised research under Prof. Yousuf Pasha Shaik

Student Assistant – Polymer Development and Testing
08/2020 – 02/2021
I.K.W, Pirmasens, Germany

  • Manufactured carbon-reinforced polyamide pellets and produced testing samples using injection molding
  • Compared mechanical and thermal properties of composites with different glass fiber weight ratios
  • Identified and addressed manufacturing defects such as sink marks, weld lines, vacuum voids, and flow lines

Publication Top Notes:

Recycling of fluoro-carbon-elastomers – A review

Citation – 6