Jong-Han Lee | Smart Materials | Best Researcher Award

Jong-Han Lee | Smart Materials | Best Researcher Award

Prof. Dr. Jong-Han Lee, Inha University, South Korea.

Dr. Jong-Han Lee 🎓 is a Professor and Head of the Department of Civil Engineering at Inha University, Korea. His expertise spans hazard risk analysis, smart materials, earthquake-resistant design, and structural resilience 🏗️. With a Ph.D. from Georgia Institute of Technology, he has held key roles in academia and industry, including POSCO E&C and Daegu University. A prolific researcher, he leads cutting-edge projects in digital twins, CFRP reinforcements, and AI-driven structural analysis 🧠🔬. He actively contributes to global conferences and editorial boards, shaping the future of civil engineering innovation 🌍.

Publivation Profiles

Scopus
Googlescholar

Education and Experience

✅ Ph.D. in Civil Engineering – Georgia Institute of Technology (2010)
✅ M.S. in Civil Engineering – KAIST, Korea (2004)
✅ B.S. in Civil Engineering – KAIST, Korea (2002)

🏛️ Professor & Head – Inha University (2024–Present)
🏛️ Associate Professor – Inha University (2019–2024)
🏛️ Assistant Professor – Inha University (2019)
🏛️ Assistant Professor – Daegu University (2013–2019)
🏗️ Section Manager – POSCO E&C (2011–2013)
🔬 Postdoctoral Researcher – Georgia Tech (2010–2011)
🔍 Graduate Research Assistant – Georgia Tech & KAIST

Suitability summary for best researcher Award

Dr. Jong-Han Lee, Ph.D., P.E., a distinguished Professor in the Department of Civil Engineering at Inha University, has been honored with the Best Researcher Award for his outstanding contributions to structural engineering, hazard risk analysis, and smart material applications. His extensive research and leadership in earthquake-resistant design, structural integrity assessment, and smart infrastructure development have significantly advanced the field, making him a deserving recipient of this prestigious accolade.

Professional Development

Dr. Lee has significantly impacted structural engineering, specializing in hazard risk mitigation, earthquake resilience, and smart materials integration 🏗️. As a conference chairman, editor-in-chief, and research leader, he actively contributes to advancing construction safety and sustainability 🌍. His leadership in Korea’s major civil engineering committees fosters global collaborations. With expertise in AI-driven diagnostics and digital twin technologies, his work bridges research and real-world applications 🤖📊. Committed to innovation, he continues to pioneer advanced construction materials, ensuring structural integrity and sustainability for future generations 🏢💡.

Research Focus

Jong-Han Lee, Ph.D., P.E., focuses on structural resilience 🏗️hazard risk analysis 🌍, and earthquake-resistant design ⚡. His research spans smart materials and structures 🧠, integrating field data with numerical simulations 📊 to enhance structural integrity 🏢. He develops advanced monitoring systems 🔍 and digital twin technologies 🖥️ for predictive maintenance. His work on carbon fiber reinforcement 🏗️ and self-healing cementitious materials 🏠 aims at sustainable infrastructure 🌱. With expertise in high-speed rail bridge dynamics 🚄 and concrete deterioration analysis 🏚️, his research contributes to safer, longer-lasting structures in civil engineering.

Awards and Honors

🏅 Best Paper Award – Korea Society of Civil Engineers
🏅 Outstanding Research Award – Korea Concrete Institute
🏅 Excellence in Engineering Innovation – Korea Institute for Structural Maintenance
🏅 Top 10 Influential Civil Engineers in Korea – 2023
🏅 Best Young Researcher Award – Korean Institute of Bridge and Structural Engineers
🏅 Outstanding Editor Award – KSCE Journal of Civil Engineering
🏅 Government Research Grant Awards – National Research Foundation of Korea

Publication Top Noted

1️⃣ Flexural capacity of fiber reinforced concrete with a consideration of concrete strength and fiber content – Construction and Building Materials (2017) – 📖 Cited by: 173 🏗️

2️⃣ Influence of concrete strength combined with fiber content in the residual flexural strengths of fiber reinforced concrete – Composite Structures (2017) – 📖 Cited by: 148 🏢

3️⃣ Investigation of extreme environmental conditions and design thermal gradients during construction for prestressed concrete bridge girders – Journal of Bridge Engineering (2012) – 📖 Cited by: 105 🌡️🌉

4️⃣ Application of probabilistic neural networks for prediction of concrete strength – Journal of Materials in Civil Engineering (2005) – 📖 Cited by: 101 🤖🔢

5️⃣ Analysis of thermal environmental effects on precast, prestressed concrete bridge girders: temperature differentials and thermal deformations – Advances in Structural Engineering (2012) – 📖 Cited by: 95 🌞🌉

6️⃣ Crack-closing performance of NiTi and NiTiNb fibers in cement mortar beams using shape memory effects – Composite Structures (2018) – 📖 Cited by: 67 🔩🏗️

7️⃣ Experimental study of the reinforcement effect of macro-type high strength polypropylene on the flexural capacity of concrete – Construction and Building Materials (2016) – 📖 Cited by: 64 🏗️🔬

8️⃣ A vision-based dynamic rotational angle measurement system for large civil structures – Sensors (2012) – 📖 Cited by: 63 📸🏢

 

Xinyue Zhang | Biomimetic Tribology | Best Researcher Award

Xinyue Zhang | Biomimetic Tribology | Best Researcher Award

Dr. Xinyue Zhang , China University of Mining and Technology , China.

🧑‍🔬 Dr. Xinyue Zhang is a postdoctoral researcher at the School of Materials and Physics at the China University of Mining and Technology. Specializing in biomimetic tribology, she focuses on mechanical design and theory with innovative contributions to soft materials and artificial joints. With 16 published papers in prestigious journals and notable achievements such as the 2024 Jiangsu Province Outstanding Postdoctoral Program award, she continues to push the boundaries in material science and mechanical engineering. 🌟 Dr. Zhang is dedicated to advancing research that bridges biomaterials and engineering for future applications. 💡

Publication profile

Googlescholar

Education and Experience

🎓 Education:

  • Ph.D. in Mechanical Design and Theory, China University of Mining and Technology (2018-2023)
  • Master of Materials Science, China University of Mining and Technology (2016-2018)
  • Bachelor of Metal Materials, Hebei University of Science and Technology (2012-2016)
  • National Government Scholarship, University of British Columbia (2021-2022)

💼 Experience:

  • Postdoctoral Fellow at China University of Mining and Technology (2023-present)
  • Research focus on biomimetic design and tribology of soft materials

Suitability for The Award

Dr. Xinyue Zhang is an outstanding candidate for the Best Researcher Award, demonstrating exceptional contributions to the field of mechanical engineering, particularly in biomimetic tribology and functional materials. Her innovative research and dedication to advancing technology in hydrogels highlight her qualifications for this prestigious recognition.

Professional Development (💼🔬)

Research Focus 🧫🧬

Awards and Honors (🏆🎖️)

🏆 2024 Jiangsu Province Outstanding Postdoctoral Program
💡 National Natural Science Foundation Youth Fund Project
📜 National Government Scholarship for Mechanical Engineering, University of British Columbia

Publication 

  1. Bilayer hydrogels with low friction and high load-bearing capacity by mimicking the oriented hierarchical structure of cartilage (Cited by: 32, Year: 2022) 🧬
  2. Fabrication and characterization of a multilayer hydrogel as a candidate for artificial cartilage (Cited by: 29, Year: 2021) 🦵
  3. Anisotropic hydrogels with enhanced mechanical and tribological performance by magnetically oriented nanohybrids (Cited by: 25, Year: 2022) ⚙️
  4. The antibacterial and wear-resistant nano-ZnO/PEEK composites were constructed by a simple two-step method (Cited by: 24, Year: 2022) 🦠
  5. Cartilage-bone inspired the construction of soft-hard composite material with excellent interfacial binding performance and low friction for artificial joints (Cited by: 15, Year: 2023) 🤖
  6. Experimental study on the nonlinear dynamic characteristics of wire rope under periodic excitation in a friction hoist (Cited by: 15, Year: 2020) 📊

Dr. Palaniappan Nagarajan | Material synthesis and characterization | Best Researcher Award

Dr. Palaniappan Nagarajan | Material synthesis and characterization | Best Researcher Award

Dr. Palaniappan Nagarajan , Cecri , India 

Dr. Felipe Caballero-Briones is a distinguished researcher and academic specializing in materials science and corrosion inhibition. He holds the position of Researcher at Instituto Politecnico Nacional, CICATA Altamira, Mexico. His expertise lies in the development and application of advanced materials, particularly in their role as corrosion inhibitors in various environments. Dr. Caballero-Briones has made significant contributions to the field, focusing on enhancing the durability and performance of metallic alloys through innovative material coatings and surface treatments.

Profile:

Scopus

Orcid

Education Details:

  • Ph.D (Chemistry): Central University of Gujarat, Gandhinagar, Gujarat
  • M.Phil – Ph.D (Chemistry): Bharathidasan University (affiliated), awarded in 2020
  • M.Phil (Chemistry): Bharathidasan University, completed between 2006-2008
  • M.Sc (Chemistry): Completed between 2004-2006
  • B.Sc (Chemistry): Completed between 2001-2004
  • 12th Grade: Tamil Nadu Board, completed in 2000
  • 10th Grade: Completed in 1999

Work Experience:

  • Research Associate: IIT Bombay, from February 22, 2021, to December 31, 2021
    • Project: Involved in the development of sodium ion battery cathodes and anodes electrode materials.

Skills:

  • Instrumentation Handling: HPLC, Galvano Static and Potential Static HRTEM, FESEM, AFM, Ellipsometer, UV cell – 2, CHI 920DSECM
  • Spectrum Interpretation: NMR, IR, UV, ELLIPSOMETER, Contact Angles, Profilometer, XPS, AFM, FESEM, XRD HRTEM, TGA, cyclic voltammetry, impedance spectroscopy, Tafel
  • Application Packages: Gaussian 09 Program Package, Origin

Projects:

  • PG Project: Studied the effect of temperature and electrolyte concentration on the dyeing of cotton using direct dye.
  • M.Phil Project: Investigated Galvano Static reduction of glucose and fumaric acid in 1M H2SO4 at a Ti / ceramic TiO2 cathode, conducted at Central Electrochemical Research Center, Karaikudi under the supervision of D. Vasudevan.

Publication Top Notes :

Experimental and computational studies of graphene oxide covalently functionalized by octylamine: Electrochemical stability, hydrogen evolution, and corrosion inhibition of the AZ13 Mg alloy in 3.5% NaCl

Citation -50

Experimental and DFT studies on the ultrasonic energy-assisted extraction of the phytochemicals of: Catharanthus roseus as green corrosion inhibitors for mild steel in NaCl medium

Citation -39

Rapid investigation expiry drug green corrosion inhibitor on mild steel in NaCl medium

Citation -33

Experimental and DFT studies of porous carbon covalently functionalized by polyaniline as a corrosion inhibition barrier on nickel-based alloys in acidic media

Citation -9

Experimental and DFT studies of gadolinium decorated graphene oxide materials for their redox properties and as a corrosion inhibition barrier layer on Mg AZ13 alloy in a 3.5% NaCl environment

Citation -7