Jong-Han Lee | Smart Materials | Best Researcher Award

Jong-Han Lee | Smart Materials | Best Researcher Award

Prof. Dr. Jong-Han Lee, Inha University, South Korea.

Dr. Jong-Han Leeย ๐ŸŽ“ย is a Professor and Head of the Department of Civil Engineering at Inha University, Korea. His expertise spans hazard risk analysis, smart materials, earthquake-resistant design, and structural resilienceย ๐Ÿ—๏ธ. With a Ph.D. from Georgia Institute of Technology, he has held key roles in academia and industry, including POSCO E&C and Daegu University. A prolific researcher, he leads cutting-edge projects in digital twins, CFRP reinforcements, and AI-driven structural analysisย ๐Ÿง ๐Ÿ”ฌ. He actively contributes to global conferences and editorial boards, shaping the future of civil engineering innovationย ๐ŸŒ.

Publivation Profiles

Scopus
Googlescholar

Education and Experience

โœ…ย Ph.D. in Civil Engineeringย โ€“ Georgia Institute of Technology (2010)
โœ…ย M.S. in Civil Engineeringย โ€“ KAIST, Korea (2004)
โœ…ย B.S. in Civil Engineeringย โ€“ KAIST, Korea (2002)

๐Ÿ›๏ธย Professor & Headย โ€“ Inha University (2024โ€“Present)
๐Ÿ›๏ธย Associate Professorย โ€“ Inha University (2019โ€“2024)
๐Ÿ›๏ธย Assistant Professorย โ€“ Inha University (2019)
๐Ÿ›๏ธย Assistant Professorย โ€“ Daegu University (2013โ€“2019)
๐Ÿ—๏ธย Section Managerย โ€“ POSCO E&C (2011โ€“2013)
๐Ÿ”ฌย Postdoctoral Researcherย โ€“ Georgia Tech (2010โ€“2011)
๐Ÿ”ย Graduate Research Assistantย โ€“ Georgia Tech & KAIST

Suitability summary for best researcher Award

Dr. Jong-Han Lee, Ph.D., P.E., a distinguished Professor in the Department of Civil Engineering at Inha University, has been honored with the Best Researcher Award for his outstanding contributions to structural engineering, hazard risk analysis, and smart material applications. His extensive research and leadership in earthquake-resistant design, structural integrity assessment, and smart infrastructure development have significantly advanced the field, making him a deserving recipient of this prestigious accolade.

Professional Development

Dr. Lee has significantly impacted structural engineering, specializing in hazard risk mitigation, earthquake resilience, and smart materials integrationย ๐Ÿ—๏ธ. As a conference chairman, editor-in-chief, and research leader, he actively contributes to advancing construction safety and sustainabilityย ๐ŸŒ. His leadership in Koreaโ€™s major civil engineering committees fosters global collaborations. With expertise in AI-driven diagnostics and digital twin technologies, his work bridges research and real-world applicationsย ๐Ÿค–๐Ÿ“Š. Committed to innovation, he continues to pioneer advanced construction materials, ensuring structural integrity and sustainability for future generationsย ๐Ÿข๐Ÿ’ก.

Research Focus

Jong-Han Lee, Ph.D., P.E., focuses onย structural resilienceย ๐Ÿ—๏ธ,ย hazard risk analysisย ๐ŸŒ, andย earthquake-resistant designย โšก. His research spansย smart materials and structuresย ๐Ÿง , integratingย field data with numerical simulationsย ๐Ÿ“Šย to enhanceย structural integrityย ๐Ÿข. He developsย advanced monitoring systemsย ๐Ÿ”ย andย digital twin technologiesย ๐Ÿ–ฅ๏ธย for predictive maintenance. His work onย carbon fiber reinforcementย ๐Ÿ—๏ธย andย self-healing cementitious materialsย ๐Ÿ ย aims atย sustainable infrastructureย ๐ŸŒฑ. With expertise inย high-speed rail bridge dynamicsย ๐Ÿš„ย andย concrete deterioration analysisย ๐Ÿš๏ธ, his research contributes to safer, longer-lasting structures in civil engineering.

Awards and Honors

๐Ÿ…ย Best Paper Awardย โ€“ Korea Society of Civil Engineers
๐Ÿ…ย Outstanding Research Awardย โ€“ Korea Concrete Institute
๐Ÿ…ย Excellence in Engineering Innovationย โ€“ Korea Institute for Structural Maintenance
๐Ÿ…ย Top 10 Influential Civil Engineers in Koreaย โ€“ 2023
๐Ÿ…ย Best Young Researcher Awardย โ€“ Korean Institute of Bridge and Structural Engineers
๐Ÿ…ย Outstanding Editor Awardย โ€“ KSCE Journal of Civil Engineering
๐Ÿ…ย Government Research Grant Awardsย โ€“ National Research Foundation of Korea

Publication Top Noted

1๏ธโƒฃย Flexural capacity of fiber reinforced concrete with a consideration of concrete strength and fiber contentย โ€“ย Construction and Building Materialsย (2017) โ€“ย ๐Ÿ“–ย Cited by: 173ย ๐Ÿ—๏ธ

2๏ธโƒฃย Influence of concrete strength combined with fiber content in the residual flexural strengths of fiber reinforced concreteย โ€“ย Composite Structuresย (2017) โ€“ย ๐Ÿ“–ย Cited by: 148ย ๐Ÿข

3๏ธโƒฃย Investigation of extreme environmental conditions and design thermal gradients during construction for prestressed concrete bridge girdersย โ€“ย Journal of Bridge Engineeringย (2012) โ€“ย ๐Ÿ“–ย Cited by: 105ย ๐ŸŒก๏ธ๐ŸŒ‰

4๏ธโƒฃย Application of probabilistic neural networks for prediction of concrete strengthย โ€“ย Journal of Materials in Civil Engineeringย (2005) โ€“ย ๐Ÿ“–ย Cited by: 101ย ๐Ÿค–๐Ÿ”ข

5๏ธโƒฃย Analysis of thermal environmental effects on precast, prestressed concrete bridge girders: temperature differentials and thermal deformationsย โ€“ย Advances in Structural Engineeringย (2012) โ€“ย ๐Ÿ“–ย Cited by: 95ย ๐ŸŒž๐ŸŒ‰

6๏ธโƒฃย Crack-closing performance of NiTi and NiTiNb fibers in cement mortar beams using shape memory effectsย โ€“ย Composite Structuresย (2018) โ€“ย ๐Ÿ“–ย Cited by: 67ย ๐Ÿ”ฉ๐Ÿ—๏ธ

7๏ธโƒฃย Experimental study of the reinforcement effect of macro-type high strength polypropylene on the flexural capacity of concreteย โ€“ย Construction and Building Materialsย (2016) โ€“ย ๐Ÿ“–ย Cited by: 64ย ๐Ÿ—๏ธ๐Ÿ”ฌ

8๏ธโƒฃย A vision-based dynamic rotational angle measurement system for large civil structuresย โ€“ย Sensorsย (2012) โ€“ย ๐Ÿ“–ย Cited by: 63ย ๐Ÿ“ธ๐Ÿข

 

Xinyue Zhang | Biomimetic Tribology | Best Researcher Award

Xinyue Zhang | Biomimetic Tribology | Best Researcher Award

Dr. Xinyue Zhang , China University of Mining and Technology , China.

๐Ÿง‘โ€๐Ÿ”ฌย Dr. Xinyue Zhangย is a postdoctoral researcher at theย School of Materials and Physicsย at theย China University of Mining and Technology. Specializing inย biomimetic tribology, she focuses on mechanical design and theory with innovative contributions to soft materials and artificial joints. With 16 published papers in prestigious journals and notable achievements such as theย 2024 Jiangsu Province Outstanding Postdoctoral Programย award, she continues to push the boundaries in material science and mechanical engineering.ย ๐ŸŒŸย Dr. Zhang is dedicated to advancing research that bridges biomaterials and engineering for future applications.ย ๐Ÿ’ก

Publication profile

Googlescholar

Education and Experience

๐ŸŽ“ย Education:

  • Ph.D. in Mechanical Design and Theory, China University of Mining and Technology (2018-2023)
  • Master of Materials Science, China University of Mining and Technology (2016-2018)
  • Bachelor of Metal Materials, Hebei University of Science and Technology (2012-2016)
  • National Government Scholarship, University of British Columbia (2021-2022)

๐Ÿ’ผย Experience:

  • Postdoctoral Fellowย at China University of Mining and Technology (2023-present)
  • Research focus onย biomimetic designย andย tribology of soft materials

Suitability for The Award

Dr. Xinyue Zhang is an outstanding candidate for the Best Researcher Award, demonstrating exceptional contributions to the field of mechanical engineering, particularly in biomimetic tribology and functional materials. Her innovative research and dedication to advancing technology in hydrogels highlight her qualifications for this prestigious recognition.

Professional Development (๐Ÿ’ผ๐Ÿ”ฌ)

Research Focusย ๐Ÿงซ๐Ÿงฌ

Awards and Honors (๐Ÿ†๐ŸŽ–๏ธ)

๐Ÿ†ย 2024 Jiangsu Province Outstanding Postdoctoral Program
๐Ÿ’กย National Natural Science Foundation Youth Fund Project
๐Ÿ“œย National Government Scholarshipย for Mechanical Engineering, University of British Columbia

Publicationย 

  1. Bilayer hydrogels with low friction and high load-bearing capacity by mimicking the oriented hierarchical structure of cartilageย (Cited by: 32, Year: 2022)ย ๐Ÿงฌ
  2. Fabrication and characterization of a multilayer hydrogel as a candidate for artificial cartilageย (Cited by: 29, Year: 2021)ย ๐Ÿฆต
  3. Anisotropic hydrogels with enhanced mechanical and tribological performance by magnetically oriented nanohybridsย (Cited by: 25, Year: 2022)ย โš™๏ธ
  4. The antibacterial and wear-resistant nano-ZnO/PEEK composites were constructed by a simple two-step methodย (Cited by: 24, Year: 2022)ย ๐Ÿฆ 
  5. Cartilage-bone inspired the construction of soft-hard composite material with excellent interfacial binding performance and low friction for artificial jointsย (Cited by: 15, Year: 2023)ย ๐Ÿค–
  6. Experimental study on the nonlinear dynamic characteristics of wire rope under periodic excitation in a friction hoistย (Cited by: 15, Year: 2020)ย ๐Ÿ“Š

Dr. Palaniappan Nagarajan | Material synthesis and characterization | Best Researcher Award

Dr. Palaniappan Nagarajan | Material synthesis and characterization | Best Researcher Award

Dr. Palaniappan Nagarajan , Cecri , Indiaย 

Dr. Felipe Caballero-Briones is a distinguished researcher and academic specializing in materials science and corrosion inhibition. He holds the position of Researcher at Instituto Politecnico Nacional, CICATA Altamira, Mexico. His expertise lies in the development and application of advanced materials, particularly in their role as corrosion inhibitors in various environments. Dr. Caballero-Briones has made significant contributions to the field, focusing on enhancing the durability and performance of metallic alloys through innovative material coatings and surface treatments.

Profile:

Scopus

Orcid

Education Details:

  • Ph.D (Chemistry): Central University of Gujarat, Gandhinagar, Gujarat
  • M.Phil – Ph.D (Chemistry): Bharathidasan University (affiliated), awarded in 2020
  • M.Phil (Chemistry): Bharathidasan University, completed between 2006-2008
  • M.Sc (Chemistry): Completed between 2004-2006
  • B.Sc (Chemistry): Completed between 2001-2004
  • 12th Grade: Tamil Nadu Board, completed in 2000
  • 10th Grade: Completed in 1999

Work Experience:

  • Research Associate: IIT Bombay, from February 22, 2021, to December 31, 2021
    • Project: Involved in the development of sodium ion battery cathodes and anodes electrode materials.

Skills:

  • Instrumentation Handling: HPLC, Galvano Static and Potential Static HRTEM, FESEM, AFM, Ellipsometer, UV cell – 2, CHI 920DSECM
  • Spectrum Interpretation: NMR, IR, UV, ELLIPSOMETER, Contact Angles, Profilometer, XPS, AFM, FESEM, XRD HRTEM, TGA, cyclic voltammetry, impedance spectroscopy, Tafel
  • Application Packages: Gaussian 09 Program Package, Origin

Projects:

  • PG Project: Studied the effect of temperature and electrolyte concentration on the dyeing of cotton using direct dye.
  • M.Phil Project: Investigated Galvano Static reduction of glucose and fumaric acid in 1M H2SO4 at a Ti / ceramic TiO2 cathode, conducted at Central Electrochemical Research Center, Karaikudi under the supervision of D. Vasudevan.

Publication Top Notes :

Experimental and computational studies of graphene oxide covalently functionalized by octylamine: Electrochemical stability, hydrogen evolution, and corrosion inhibition of the AZ13 Mg alloy in 3.5% NaCl

Citation -50

Experimental and DFT studies on the ultrasonic energy-assisted extraction of the phytochemicals of: Catharanthus roseus as green corrosion inhibitors for mild steel in NaCl medium

Citation -39

Rapid investigation expiry drug green corrosion inhibitor on mild steel in NaCl medium

Citation -33

Experimental and DFT studies of porous carbon covalently functionalized by polyaniline as a corrosion inhibition barrier on nickel-based alloys in acidic media

Citation -9

Experimental and DFT studies of gadolinium decorated graphene oxide materials for their redox properties and as a corrosion inhibition barrier layer on Mg AZ13 alloy in a 3.5% NaCl environment

Citation -7