Shujiang Liu | Glass Materials | Best Researcher Award

Shujiang Liu | Glass Materials | Best Researcher Award

Prof. Shujiang Liu | Qilu University of Technology | China

Shujiang Liu, Ph.D., is a Professor at the School of Materials Science and Engineering, Qilu University of Technology, with over two decades of dedicated experience in the teaching and research of glass materials. His scholarly expertise spans across high-strength glasses, transparent glass-ceramics, and optical glasses, making significant contributions to both the academic community and industrial applications of advanced glass science. Over the years, Professor Liu has actively engaged in professional service, holding key roles such as member of the Glass Branch of the Chinese Ceramics Society, Chairman of the Shandong Glass Standards Committee, and member of the Expert Committee of the China Household Glass Association. He has authored more than 75 peer-reviewed publications in internationally recognized journals, which have been cited 916 times by 814 documents, with an h-index of 15. His research contributions provide original insights into glass crystallization, sintering behavior, phase separation, and novel glass-ceramic applications, while he also serves as a reviewer for leading journals including the Journal of Non-Crystalline Solids, Ceramics International, and the Journal of the American Ceramic Society. His recent research highlights include studies on the influence of trace elements such as NiO on soda-lime-silicate and aluminosilicate glasses, the mixed-alkali effect in borate glass systems, and the role of phase separation in self-limited crystallization and crack growth resistance in phosphosilicate glasses. His team has also advanced knowledge on glass powders’ sintering behavior, early densification effects on glass–calcium carbonate mixtures, and the development of glass-ceramics as high-performance lithium-ion battery anode materials. With a consistent record of collaborative research and impactful publications from 2020 to 2025, Professor Liu continues to push the boundaries of glass science while fostering innovation in materials engineering. His work bridges fundamental research and applied technology, strengthening China’s position in glass science and standardization efforts worldwide.

Profile: Scopus | Researchgate

Featured Publications 

  • Jiang, X., Liu, S., Shan, Z., Lan, S., & Shen, J. (2020). Influence of traces of NiO on crystallization of soda-lime-silicate glass. Journal of the European Ceramic Society, 40(15), 6014–6022.

  • Liu, S., Tang, W., Ma, J., Zhang, Y., & Yue, Y. (2020). Li₂TiSiO₅ glass-ceramic as anode materials for high performance lithium ion batteries. ACS Applied Energy Materials, 3(10), 9760–9768.

  • Shan, Z., Zhang, Y., Liu, S., Tao, H., & Yue, Y. (2020). Mixed-alkali effect on hardness and indentation-loading behavior of a borate glass system. Journal of Non-Crystalline Solids, 548, 120314.

  • Zhou, Y., Zhang, J., Chen, Y., & Liu, S. (2021). On the isothermal sintering behavior and transparency of glass powders. Journal of Non-Crystalline Solids, 571, 121024.

  • Chen, Y., Liu, S., Zhou, Y., Shang, P., Shan, Z., & Zhang, J. (2022). Effect of Al₂O₃ content on amorphous phase-separation and self-limited crystallization of phosphosilicate glasses. Journal of Non-Crystalline Solids, 584, 121505.

  • Shang, P., Liu, S., Zhao, F., & Yi, Z. (2023). Effect of early densification on foaming process of glass–calcium carbonate mixture. Powder Technology, 424, 118560.

  • Zhao, F., Liu, S., Shang, P., Shan, Z., Lu, Q., Zhang, J., Su, Y., & Yi, K. (2023). Transparent glaze containing high-alumina glass frit: Batch-to-melt conversion. Journal of Non-Crystalline Solids, 617, 122496.

  • Li, H., Liu, S., Chen, Y., Shang, P., & Shan, Z. (2023). Effect of phase separation of a phosphosilicate glass on self-limited crystallization and slow crack growth. Physics and Chemistry of Glasses: European Journal of Glass Science and Technology Part B, 64(3), 110–119.

Wenqing Wang | Design of Materials | Best Researcher Award

Wenqing Wang | Design of Materials | Best Researcher Award

Prof. Dr. Wenqing Wang | Anhui Normal University | Best Researcher Award

Dr. Wenqing Wang is a prominent researcher in the field of chemistry, currently working at the College of Chemistry and Material Science, Anhui Normal University, Wuhu, Anhui, China. Born on February 19, 1987, she has dedicated her career to advancing the design, synthesis, and characterization of novel organometallic complexes and radicals. Dr. Wang completed her Bachelor of Science in Chemistry at Hebei Normal University in 2013 and went on to earn her Ph.D. in Chemistry from Nanjing University in 2018 under the supervision of Professor Xinping Wang, with her doctoral thesis titled “Syntheses and Properties of Chromium Radicals and Tetraazacyclophane Diradicals.” Her research focuses on organometallic complex studies, including the development of innovative radicals, the activation of small organic molecules, and the exploration of new chemical bond transformations. Since 2018, she has been contributing to both research and education at Anhui Normal University, mentoring students while actively engaging in cutting-edge chemical research. Dr. Wang’s scientific impact is reflected in her 22 publications, 317 citations across 277 documents, and an h-index of 11, highlighting her growing influence in the field. Her work bridges fundamental chemistry with practical applications, emphasizing the potential of radical-based systems in chemical synthesis and materials development. Recognized for her meticulous approach and innovative methodologies, she continues to advance the understanding of organometallic systems and radical chemistry, making significant contributions to both theoretical insights and practical applications. Dr. Wang remains committed to fostering international collaborations, guiding emerging chemists, and expanding the frontiers of chemical research with a focus on novel radicals and organometallic compounds.

Profile: Scopus | Orcid 

Featured Publications 

Wang, W., Sun, P., Liu, X., Zhang, X., Zhang, L., Tan, Y.-z., & Wang, X. (2024). Radical cations of bilayer nanographenes. Organic Letters.

Wang, W., Li, S., Wang, Q., Ding, X., Fang, Y., Ruan, H., Zhao, Y., & Wang, X. (2022). S = 1/2 tetracene monoradical cation/anion: Ion-based one-dimensional antiferromagnetic chains. Chemical Communications.

Wang, W., Wang, Q., Ding, X., Liu, X., Sun, P., & Wang, X. (2022). Synthesis and chemical redox studies of half-sandwich chromium carbonyl azobenzenes. Organometallics.

Yang, W., Wang, W., Zhang, L., Zhang, L., Ruan, H., Feng, Z., Fang, Y., & Wang, X. (2021). Persistent 2c–3e σ-bonded heteronuclear radical cations centered on S/Se and P/As atoms. Chemical Communications.

Wang, W. (2020). Stable, yet “naked”, azo radical anion ArNNAr(-) and dianion ArNNAr(2-) (Ar = 4-CN-2,6-(i)Pr2-C6H2) with selective CO2 activation. Chemical Communications.

Wang, W. (2018). An isolable diphosphene radical cation stabilized by three-center three-electron π-bonding with chromium: End-on versus side-on coordination. Angewandte Chemie International Edition.

Wang, W. (2018). S = 1 tetraazacyclophane diradical dication with robust stability: A case of low-temperature one-dimensional antiferromagnetic chain. Journal of the American Chemical Society.

Wang, W. (2017). Air-stable diradical dications with ferromagnetic interaction exceeding the thermal energy at room temperature: From a monomer to a dimer. Science China Chemistry.

Anas krime | Advanced Material | Young Researcher Award

Anas krime | Advanced Material | Young Researcher Award

Mr. Anas krime, Mohammed V University-Rabat, Morocco.

Mr. Krime Anas is a Ph.D. student in Materials and Environment Chemistry at the Faculty of Sciences, Mohammed V University in Rabat, Morocco. His research focuses on the valorization of Moroccan oil shales and the development of advanced materials for environmental purification. He has served as a temporary adjunct lecturer in various chemistry disciplines and completed research internships in petrochemical laboratories and international institutions. Fluent in English, French, and Arabic, Dr. Anas possesses strong laboratory skills and a multidisciplinary background in analytical chemistry, materials science, and environmental applications. He has published multiple papers and actively participates in scientific conferences.

Professional Profile

Scopus
Orcid

Education and Experience

Education:

  • Ph.D. in Materials and Environment Chemistry – Mohammed V University, Rabat (Sep 2021 – Present)
    Thesis: Valorization of Moroccan oil shale for environmental applications

  • Master’s in Chemistry, Analytical Physics and Materials – Mohammed V University, Rabat (2019–2021)
    Thesis: Valorization of raw and activated oil shales from the Rif region

  • Bachelor’s (Licence) in Material Science Chemistry – Mohammed V University, Rabat (2016–2019)
    Thesis: Characterization of olive pomace

Research & Teaching Experience:

  •  Research Internship – University of Évora, Portugal (Sep 2024 – Present)
    Characterization of materials from oil shales

  • Adjunct Teacher – Analytical Solution Chemistry (2023–2024)

  • Adjunct Teacher – Foreign Languages (French), Faculty of Sciences (2024–2025)

  • Adjunct Teacher – Hydrology and Bromatology, Faculty of Medicine (2023–2024)

  • Adjunct Teacher – Kinetics & Catalysis, Faculty of Sciences (2022–2023)

  • Adjunct Teacher – Organic Chemistry, Faculty of Sciences (2021–2023)

  •  Internship – ONHYM Petrochemical Lab, Rabat (July–Aug 2023)

Suitability Summary for the Young Researcher Award

Mr. Krime Anas is a highly promising early-career scientist and a strong candidate for the Young Researcher Award, currently pursuing his Ph.D. in Materials and Environmental Chemistry at the Mohammed V University in Rabat, Morocco. His work is centered on the valorization of Moroccan oil shale and natural materials for environmental applications, particularly in wastewater treatment and pollutant adsorption. He exhibits the qualities of a driven, collaborative, and multidisciplinary researcher, actively contributing to scientific advancement through both academic and teaching roles.

Professional Development

Krime Anas has consistently pursued academic and professional development through formal training and international exposure. He has obtained several online certifications in key research tools including Scopus metrics, journal selection, reference management (Mendeley), and intellectual property. His participation in scientific events such as the International Congress on Materials & Structural Stability and national Ph.D. days demonstrates his commitment to research dissemination. Anas also completed project management training and ISO quality standards workshops, expanding his expertise beyond the lab. These experiences highlight his proactive approach to integrating technical, research, and organizational competencies in his scientific career.

Research Focus

Krime Anas’s research is focused on environmental remediation and advanced material synthesis. His core interest lies in adsorption processes, particularly using Moroccan oil shales and porous hydroxyapatites for the removal of heavy metals and organic pollutants from wastewater. He employs techniques like factorial design, SEM, XRD, and molecular dynamics to optimize material properties. His studies contribute to the development of eco-friendly and cost-effective sorbents, bridging the gap between material chemistry and environmental sustainability. His interdisciplinary work integrates materials science, analytical chemistry, and waste valorization to support cleaner industrial and environmental practices.

Awards and Recognition

Krime Anas has earned recognition for his impactful research in environmental material chemistry, particularly through multiple accepted papers in peer-reviewed journals focused on adsorption and wastewater treatment. His academic contributions have been showcased through poster presentations at prestigious events such as the International Congress on Materials & Structural Stability and the JNDJC conference for Ph.D. researchers. His work on valorizing Moroccan oil shale has received national attention for its innovation in eco-friendly pollutant removal. In addition to his scientific output, he has completed international internships and received numerous certifications in scientific publishing, research tools, and quality management systems.

Top Noted Publications

  • Extracting High Purity Nano‑silica from Oil Shale: Valorising a Neglected Natural Resource, Materials Research Bulletin, 2025

  • Low‑Cost Titania‑Hydroxyapatite (TiHAp) Nanocomposites Were Synthesized for Removal of Methylene Blue under Solar and UV Irradiation, Next Materials, 2025

  • Turning Waste into Wealth: Sustainable Amorphous Silica from Moroccan Oil Shale Ash, Recycling, 2025

  • Elimination of Copper (II) and Lead (II) from Wastewater Using Porous HAp: Comparative Study, International Journal of Chemical and Biochemical Sciences, 2023

  • Optimization of the Adsorption of Lead (II) by Hydroxyapatite Using a Factorial Design: Density Functional Theory and Molecular Dynamics, Frontiers in Environmental Science, 2023