Khyati Tomar | Polymer-Matrix composites | Best Researcher Award

Ms. Khyati Tomar | Polymer-Matrix composites | Best Researcher Award

Research Scholar, at Netaji Subhas University of Technology, India.

Khyati Tomar is a dedicated research scholar at Netaji Subhas University of Technology (NSUT), specializing in the development of nanoformulations for pesticides and bio-pesticides. Her research focuses on enhancing the efficacy, stability, and targeted delivery of agrochemicals, thereby improving pest management outcomes while minimizing environmental impact. With a strong foundation in nanotechnology, agrochemical sciences, and environmental safety, she aims to integrate sustainable solutions into modern agriculture. Khyati has contributed significantly to advancing nanomaterials-based delivery systems, improving the bioavailability and controlled release of active ingredients. Her innovative approaches bridge the gap between traditional pest control and eco-friendly agricultural practices.  She has authored impactful publications in SCI-indexed journals and filed patents on advanced nanoemulsion-based formulations. Through her research, she strives to provide safer, more effective pest management solutions, ensuring sustainability, food security, and environmental preservation.

Professional Profile

Scopus

ORCID

🎓 Education

Khyati Tomar pursued her academic journey with a deep interest in nanotechnology and agricultural sciences, which shaped her expertise in sustainable agrochemical delivery systems.  She holds a strong educational background in nanomaterials, colloidal chemistry, and environmental science, enabling her to develop eco-friendly pesticide nanoformulations. At Netaji Subhas University of Technology, she is currently advancing her Ph.D. research, focusing on novel nanocarriers for targeted pesticide delivery. Her education has been enriched by interdisciplinary studies covering material science, crop protection, and environmental toxicology, empowering her to address modern agricultural challenges. Khyati has also undergone specialized training in green synthesis methods, nanoformulation characterization, and field application technologies, further broadening her scientific skill set.  Through rigorous academic research and practical experimentation, she has developed expertise that contributes to sustainable pest management and reduced ecological risks, laying the groundwork for her impactful scientific contributions.

💼 Experience

As a research scholar at NSUT, Khyati Tomar has gained extensive hands-on experience in the development of nanoparticle-based agrochemical delivery systems.  Her work involves eco-friendly synthesis of nanomaterials, designing colloidal nanoemulsions, and evaluating their biological efficacy on target pests and pathogens. She has successfully developed tin oxide nanoparticles for early blight management and pH-responsive chitosan-based nanoemulsions for targeted fungicide delivery, demonstrating innovation in controlled-release agricultural formulations. Khyati has collaborated with experts in nanotechnology, microbiology, and agricultural sciences, enhancing the interdisciplinary nature of her research. Her experience includes laboratory-scale formulation, in-vitro and in-vivo testing, stability assessment, and toxicology evaluations, ensuring that her research aligns with environmental safety standards. Additionally, she has contributed to patentable innovations, with two patents under process for novel pesticide nanoformulations. Through her research experience, she is contributing to the future of sustainable and precise pest management solutions.

🔬 Research Interests

Khyati Tomar’s research interests lie at the intersection of nanotechnology, agrochemicals, and environmental safety.  She is particularly passionate about nanoformulations for pesticides and bio-pesticides, aiming to enhance their stability, efficacy, and targeted delivery while minimizing environmental toxicity. Her work focuses on green synthesis of nanomaterials, colloidal nanoemulsions, and biopolymer-coated nanocarriers for controlled release of active ingredients.  She is also interested in understanding the biological interactions of nanoformulations with target pests and non-target organisms to ensure environmental safety and regulatory compliance. Khyati’s research addresses early blight, soft rot, and bacterial/fungal plant diseases, contributing to sustainable solutions in modern agriculture. Her long-term goal is to create cost-effective, eco-friendly nano-delivery systems that align with precision agriculture and promote global food security.  By merging nanomaterials science and agricultural biotechnology, she aims to revolutionize pest management practices.

🏆 Awards & Recognitions

Khyati Tomar’s innovative contributions to nano-agrochemical research have earned her recognition in academic and research circles.  She has authored high-impact publications in SCI-indexed journals, with research featured in Inorganic Chemistry Communications, Sustainable Chemistry and Pharmacy, and the Journal of Environmental Chemical Engineering. Her novel approach to eco-friendly nanoparticle synthesis for disease management has been highlighted for its sustainability and practical application in agriculture. She has filed two patents: one on water-soluble antibiotic-fungicide nanoemulsions (Application No. 202511000058) and another on a lignin-coated dual fungicide nanocolloid (Application No. 202511045255). These patents underscore her role as an innovator in sustainable pest control solutions. Khyati has also received commendations for her research excellence and dedication to environmentally safer pest management. Her work continues to inspire advancements in precision agriculture and eco-conscious agrochemical delivery systems.

📚 Top Noted Publications

Khyati Tomar has contributed to highly cited research publications that address critical challenges in pest management using nanoformulations. 🌿🔬

1️⃣ Eco‑friendly synthesis of tin oxide nanoparticles: A novel strategy for managing early blight and soft rot in tomato crops

  • Journal: Inorganic Chemistry Communications (Elsevier)

  • Volume & Article Number: Volume 169, Article 113126

  • Publication Date: September 7, 2024

  • DOI: 10.1016/j.inoche.2024.113126 American Chemical Society Publications+1American Chemical Society Publications+1American Chemical Society Publications+6OUCI+6AbleSci+6AbleSci+1AbleSci+1

  • Authors: Siddharth Gautam, Khyati Tomar, Ajeet Singh Tomar, Sadhna Chauhan, Anjana Sarkar, Nancy Gupta

2️⃣ Chitosan-based colloidal nanoemulsion for pH-responsive kasugamycin delivery and improved efficacy

  • Journal: Sustainable Chemistry and Pharmacy

  • Article Number: 102079

  • Publication Year: 2025 American Chemical Society Publications+4OUCI+4AbleSci+4

  • DOI: 10.1016/j.scp.2025.102079

  • Authors: Khyati Tomar, Siddharth Gautam, Iltisha Saifi, Sadhna Chauhan, Smriti Kala, Anjana Sarkar, Nancy Gupta

3️⃣ Lignin-coated nanocolloidal dual fungicide system with improved stability and adhesion for environmentally safer control of Xanthomonas euvesicatoria and Colletotrichum falcatum

  • Journal: Journal of Environmental Chemical Engineering

  • Volume & Article Number: Volume 13, Issue 5, Article 117811

  • Publication Year: 2025 OUCIOUCI+2American Chemical Society Publications+2American Chemical Society Publications+2

  • DOI: 10.1016/j.jece.2025.117811

  • Authors: Khyati Tomar, Siddharth Gautam, Sadhna Chauhan, Smriti Kala, Anjana Sarkar

🏆 Conclusion

Considering her impactful research in sustainable nanotechnology for agriculture, multiple SCI publications, and ongoing patents, Khyati Tomar is a strong candidate for the Best Researcher Award. Her work represents a significant step toward eco-friendly agrochemical solutions, aligning with the award’s focus on innovation and environmental sustainability.

Dr. Yifeng Dong| Mechanical of Composite Materials Award | Best Researcher Award

Dr. Yifeng Dong| Mechanical of Composite MaterialsAward | Best Researcher Award

Dr. Yifeng Dong , Beijing Institute of Technology , China

Dong Yifeng is a dedicated researcher specializing in the mechanics and design of flexible composite materials. Currently affiliated with Tsinghua University as a Ph.D. student, Dong’s expertise spans from macro- to meso-structural optimization of flexible composites. His pioneering work includes developing hyper-visco-pseudoelastic constitutive models and homogenized anisotropic theoretical models to enhance the mechanical performance evaluation of these materials. Dong has significantly contributed to overcoming challenges in predicting gas leakage rates and improving sealing performance in flexible composite structures. His research has yielded multiple publications in esteemed journals, with several papers currently under review. Dong Yifeng’s innovative approach has also led to the establishment of comprehensive testing platforms and characterization methods, culminating in the acquisition of two authorized invention patents. His work not only advances the scientific understanding of flexible composites but also provides crucial insights for their practical application and design enhancement.

Profile :

Scopus

Google scholar

Education/Work Experience:

  • 04/2022-12/2023 Research Fellow, Beijing Institute of Technology
  • 08/2020-02/2022 Civil Servant, Shanghai Municipal Commission for Discipline Inspection
  • 09/2015-08/2020 Ph.D. Student, Tsinghua University
  • 09/2011-06/2015 Undergraduate Student, Harbin Engineering University

Research Interests:

Mechanics and Design of Flexible Composite Materials

Research Experience: Mechanical and Sealing Performance of Flexible Composite Structures

  • Research Content:
    • Developed a hyper-visco-pseudoelastic constitutive model for fiber-reinforced flexible composites.
    • Established a homogenized anisotropic theoretical model for textile flexible composites.
    • Investigated the gas leakage rate prediction and sealing mechanisms in flexible composite structures.
  • Research Achievement:
    • Advanced theoretical models for evaluating mechanical properties of flexible composites.
    • Innovated methods for predicting gas leakage rates in flexible composite structures.
  • Research Value:
    • Proposed new evaluation methods for mechanical and sealing performance.
    • Published 7 SCI papers, with 1 paper currently under review.

Testing Platform and Characterization Methods for Mechanical and Sealing Performance of Flexible Composite Structures

  • Research Content:
    • Developed testing platforms and characterization methods for durability, friction, and sealing performance.
    • Comprehensive analysis of compression rebound, friction, durability, and sealing under varying temperatures.
  • Research Achievement:
    • Overcame challenges in lacking testing platforms for mechanical and sealing performance.
  • Research Value:
    • Established a database for critical parameters, aiding in flexible composite structure design.
    • The platform serves as a verification tool for new flexible composite designs.
    • Secured 2 authorized invention patents.

Optimization Design Methods for Macro- and Meso-structural of Flexible Composite Structures

  • Research Content:
    • Innovated multi-objective optimization for macroscopic cross-sectional design.
    • Developed multiscale optimization methods for meso-structure of flexible composites.
  • Research Achievement:
    • Clarified design principles and provided efficient design methods for flexible composites.
  • Research Value:
    • Introduced novel approaches for designing flexible composite structures.
    • Published 3 SCI papers, with 1 paper currently under review.
Publications Top Notes 📄