Savidh Khan | Materials Science | Best Researcher Award

Dr. Savidh Khan | Thapar Institute of Engineering & Technology | India

Dr. Savidh Khan is a distinguished physicist and materials scientist currently serving as an Assistant Professor in the Department of Physics at RIMT University, Mandi Gobindgarh, Punjab, India. His academic and research journey reflects a deep commitment to advancing knowledge in materials science and applied physics, with a particular focus on the synthesis, characterization, and application of advanced functional materials. He earned his Ph.D. in Physics and Materials Science from Thapar Institute of Engineering and Technology, where his research centered on undoped and doped vanadium oxides for solid oxide fuel cell applications under the supervision of Professor Kulvir Singh. His earlier academic achievements include an M.Tech. in Metallurgical and Materials Engineering from Thapar University, an M.Phil. and M.Sc. in Physics, and a B.Sc. in Physics, Chemistry, and Mathematics from C.C.S. University, Meerut, India. Over the years, Dr. Khan has developed expertise in experimental materials science, particularly in preparing glasses and ceramics using melt-quench and solid-state reaction techniques. He is highly skilled in utilizing a range of advanced characterization tools such as X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), Raman spectroscopy, scanning electron microscopy (SEM), UV-visible spectroscopy, thermogravimetric and differential thermal analysis (TG/DTA), and impedance spectroscopy to investigate material structure, stability, and performance. His research spans several critical areas, including solid oxide fuel cells, lithium-ion batteries, radiation dosimeters, upconversion materials, bioceramics, and glass-ceramics for biomedical and energy applications, with a strong focus on improving material functionality and sustainability. Dr. Khan’s teaching experience is equally impressive, having served at reputed institutions including Thapar Institute of Engineering and Technology, S.I.T.E. Meerut, Meerut College, and D.N. College, where he has effectively combined his research expertise with classroom teaching to inspire and mentor students. He has successfully supervised one Ph.D. scholar and continues to guide four ongoing doctoral candidates in cutting-edge materials research. His outstanding academic contributions have been recognized through several prestigious awards and fellowships, including the GATE Fellowship from the Ministry of Human Resource Development (MHRD), Government of India, and the Direct-SRF fellowship from the Council of Scientific and Industrial Research (CSIR), New Delhi. He also received the Best Poster Award at the Conference on Microscopy in Materials Science for his innovative research presentation. With numerous publications, a growing citation record, and a solid h-index, Dr. Savidh Khan continues to make significant contributions to the fields of materials science and applied physics, advancing technologies that address challenges in energy storage, biomedical applications, and sustainable materials development.

Profile: Scopus | Orcid | GoogleScholar | Researchgate 

Featured Publications 

Khan, S., Kaur, G., & Singh, K. (2017). Effect of ZrO₂ on dielectric, optical and structural properties of yttrium calcium borosilicate glasses. Ceramics International, 43(1), 722–727.

Khan, S., & Singh, K. (2019). Effect of MgO on structural, thermal and conducting properties of V₂₋ₓMgₓO₅₋δ (x = 0.05–0.30) systems. Ceramics International, 45(1), 695–701.

Kaur, A., Khan, S., Kumar, D., Bhatia, V., Rao, S. M., Kaur, N., Singh, K., Kumar, A., … (2020). Effect of MnO on structural, optical and thermoluminescence properties of lithium borosilicate glasses. Journal of Luminescence, 219, 116872.

Khan, S., & Singh, K. (2020). Structural, optical, thermal and conducting properties of V₂₋ₓLiₓO₅₋δ (0.15 ≤ x ≤ 0.30) systems. Scientific Reports, 10(1), 1089.

Jaidka, S., Khan, S., & Singh, K. (2018). Na₂O doped CeO₂ and their structural, optical, conducting and dielectric properties. Physica B: Condensed Matter, 550, 189–198.

Savidh Khan | Materials Science | Best Researcher Award

You May Also Like